Ekstremregn i Danmark

Statistisk bearbejdning af nedbørsdata fra Spildevandskomiteens regnmålersystem 1979-96

Henrik Madsen

ntl

September 1998

Institut for Strømningsmekanik og Vandressourcer Institut for Miljøteknologi Danmark Tekniske Universitet Dette er en netpublikation, der kan downloades fra http://www.imt.dtu.dk/publications/fulltext/1998/imt1998-173.pdf

ISBN: 87-89220-40-4

Udgivet af:

Institut for Miljøteknologi Danmarks Tekniske Universitet Bygning 115 2800 Kongens Lyngby Tlf.: 4525 1610 Fax: 4593 2850 E-mail: <u>biblioteket@imt.dtu.dk</u>

i samarbejde med:

Institut for Strømningsmekanik og Vandressourcer Danmarks Tekniske Universitet Bygning 115 2800 Kongens Lyngby Tlf.: 4525 1400 Fax: 4593 2860

Forord

Nærværende rapport er udarbejdet under det kommunaltekniske udviklingsprojekt "Databearbejdning og stokastisk modellering af regn og regnafstrømning i byer", finansieret af Det Kommunale Momsfond, Spildevandskomiteen og Regnmålersystemets Styregruppe. Spildevandskomiteens udvalg vedrørende regnafledning (Regnudvalget) har fungeret som styregruppe.

Projektet er udført på Institut for Strømningsmekanik og Vandressourcer og Institut for Miljøteknologi på Danmarks Tekniske Universitet. De gennemførte bearbejdninger og rapportens opbygning og indhold har løbende været diskuteret med Peter Steen Mikkelsen, Institut for Miljøteknologi. Desuden har et udkast til rapporten været forelagt Regnudvalget.

Data benyttet i rapporten er stillet til rådighed af Spildevandskomiteen og Danmarks Meteorologiske Institut.

Lyngby, September 1998

Henrik Madsen

Resumé

Til analyse af ekstremregn i Danmark baseret på regndata fra Spildevandskomiteens regnmålersystem er en parametrisk statistisk model blevet introduceret. Den benyttede parametrisering består af henholdsvis det gennemsnitlige antal årlige ekstreme hændelser (overskridelser over et fastlagt niveau), middelværdien af overskridelsernes størrelse (middeloverskridelsen) og højere ordens momenter. Baseret på parameterestimater for de lokale regnserier er en regional ekstremværdimodel formuleret til beskrivelse af den regionale variabilitet og til kvantificering af de underliggende estimationsusikkerheder. Som special tilfælde af den regionale model benyttes en middelværdi betragtning til vurdering af den regionale homogenitet. For de variable der udviser en signifikant regional variabilitet er en regressionsmodel anvendt, hvor potentialet for udnyttelse af forskellige klimatiske og fysiografiske karakteristika til beskrivelse af variabiliteten er undersøgt.

For de indgående parametre i ekstremværdimodellen konkluderes følgende. Antallet af ekstreme hændelser udviser en signifikant regional variabilitet. En betydelig del af denne variabilitet kan beskrives af årsmiddelnedbøren, idet der forekommer flere ekstreme hændelser på steder med stor årsmiddelnedbør. Forklaringsgraden er størst for intensiteter med stor varighed og bassin- og overløbsvolumen med små afløbstal. Middeloverskridelsen kan antages at være homogen (konstant niveau i hele landet) for intensiteter med små varigheder (mindre end ca. en time) og bassin- og overløbsvolumen for store afløbstal. For intensiteter med varigheder over en time og bassin- og overløbsvolumen for store afløbstal. For intensiteter med varigheder over en time og bassin- og overløbsvolumen for små afløbstal er der derimod en signifikant regional variabilitet. En betydelig del af denne variabilitet kan forklares af en identificeret storby effekt, der bevirker at middeloverskridelsen i Københavnsområdet generelt er signifikant højere end i resten af landet. For de højere ordens momenter benyttes en middelværdi betragtning.

Baseret på de regionale modeller for parametrene i ekstremværdimodellen kan T-års hændelsen med tilhørende usikkerhed bestemmes på enhver lokalitet i Danmark. Den resulterende usikkerhed udtrykker dels den statistiske usikkerhed, korrigeret for korrelation mellem stationerne, og dels den eventuelle residuale usikkerhed, grundet regional variabilitet, der ikke kan forklares af regressionsmodellen. Med hensyn til effekten af årsmiddelnedbøren gælder generelt, at jo større årsmiddelnedbør jo større er T-års hændelsen. Den relative effekt er størst for små gentagelsesperioder. Grundet forskelle i middeloverskridelsen fås et betydeligt højere niveau af T-års hændelsen i København end i resten af landet, og forskellen er større jo større gentagelsesperiode der betragtes. Det regionale T-års estimat ligger betydeligt under Landsregnrækken for intensiteter med små varigheder. For intensiteter med store varigheder ligger T-års niveauet i København betydeligt over Landsregnrækken, mens middelniveauet i den resterende del af landet stort set svarer til Landsregnrækken.

Sluttelig, i forbindelse med brug af historiske regnserier i numeriske modeller, er de analyserede lokale regnserier klassificeret i forhold til den regionale ekstremværdimodel, der derved muliggør valg af regnserie på basis af et ønsket konfidensniveau for dimensioneringen. Desuden er enkelte stationer udpeget, der bør betragtes som outliers i forhold til den regionale model.

Indholdsfortegnelse

1. Indledning	. 7
1.1 Baggrund1.2 Projektformål og indhold	. 7 . 8
2. Regndata	. 9
2.1 Automatiske nedbørsmålere	. 9 10
3. Ekstremværdiserier 1	15
3.1 Analyserede variable13.2 Ekstremværdimodel13.3 Basis statistik23.4 Analyse af stationaritet23.5 Regional modellering2	15 18 20 22 23
4. L-moment analyse	27
4.1 L-moment diagram24.2 Test størrelser24.3 Resultater3	27 28 32
5. Regional middelværdimodel	37
5.1 GLS model35.2 Estimation af den spatiale korrelationsstruktur45.3 Estimation af regionale parametre45.4 Regional T-års estimation4	37 40 45 49
6. Modellering af regional variabilitet	55
6.1 Regionale modeller56.2 Regressorer56.3 Modellering af PDS parametre56.4 Estimation af T-års hændelse6	55 57 58 67
7. Klassificering af historiske regnserier	75
8. Konklusion	85
9. Referencer	87
Appendiks A: Oversigt over regnmålere tilknyttet DMI's net af automatiske nedbørsmålere	91
Appendiks B: Nedbørshændelser med ekstreme minutintensiteter	93

1. Indledning

1.1 Baggrund

På foranledning af Spildevandskomiteen blev der i januar 1979 oprettet et nyt system til registrering af regn for specifik anvendelse indenfor urban hydrologisk modellering (Spildevandskomiteen, 1980). I alt har der siden opstarten været tilsluttet 90 målestationer, og beskrivelsen af den geografiske fordeling af ekstremregn i Danmark er derfor væsentligt forbedret i forhold til tidligere, hvor kun få stationer udgjorde grundlaget for afløbstekniske beregninger.

Den første systematiske bearbejdning af data fra regnmålersystemet er rapporteret i Bramslev (1989). En væsentlig iagttagelse i dette projekt var, at ekstremregn udviser en betydelig variabilitet i Danmark. En inddeling af det samlede datasæt i 4 geografiske regioner kunne ikke umiddelbart forklare den observerede variabilitet. Harremoës et al. (1992), Dahl et al. (1992) og Mikkelsen et al. (1992) påviste, at for små gentagelsesperioder (*T* mindre end 1 år) kunne en del af den regionale variabilitet forklares af årsmiddelnedbøren. For større gentagelsesperioder fandtes ingen signifikant korrelation med årsmiddelnedbøren. En væsentlig erkendelse på baggrund af de første analyser var derfor, at der ikke var grundlag for en egentlig modellering af den geografiske variabilitet af ekstremregn. I stedet anlægges en statistisk betragtning, der tager den regionale variabilitet i regning som et usikkerhedsbidrag ved dimensionering.

Analyse af mere avancerede statistiske metoder til kvantificering af de underliggende usikkerheder og kvantificering af den regionale variabilitet blev igangsat i forbindelse med to eksamensprojekter på Danmarks Tekniske Universitet i efteråret 1992. Disse arbejder var baseret på to forskellige statistiske modeller, henholdsvis en ikkeparametrisk formulering (Arnbjerg-Nielsen, 1993; Arnbjerg-Nielsen et al., 1994) og en parametrisk formulering baseret på den såkaldte overskridelsesmodel (Partial Duration Series (PDS) model) (Madsen, 1993; Madsen et al., 1994). I begge analyser blev der påvist en signifikant regional variabilitet af ekstremregn for små gentagelsesperioder, hvorimod den observerede variabilitet for større gentagelsesperioder i betydelig grad kunne tilskrives de statistiske usikkerheder.

Ved benyttelse af en middelværdi betragtning af parametrene i PDS modellen, formulerede Madsen et al. (1994) en regional model, der muliggør estimation af T-års hændelsen med tilhørende usikkerhed (inkluderende både regional variabilitet og statistisk usikkerhed) på enhver lokalitet i Danmark. Den totale usikkerhed på T-års estimatet er stærkt afhængig af dels den regionale variabilitet og dels af korrelationen mellem de stationer, der er brugt til estimation af de regionale parametre (Mikkelsen et al., 1995; Rosbjerg & Madsen, 1996). En metode til kvantificering af korrelationen mellem stationer grundet den spatiale udbredelse af ekstreme nedbørshændelser er beskrevet i Mikkelsen et al. (1996).

Motiveret af de indledende analyser af sammenhængen mellem ekstremregn og årsmiddelnedbøren analyserede Arnbjerg-Nielsen et al. (1996) potentialet for generel udnyttelse af forskellige fysiografiske og klimatiske karakteristika til beskrivelse af den regionale variabilitet. Analysen påviste, at kun for små gentagelsesperioder (T mindre end 0.5 år) kunne de betragtede karakteristika beskrive en signifikant del af den regionale variabilitet. I den resulterende regressionsmodel indgår både årsmiddelnedbøren og 0.2 års hændelsen for døgnnedbøren på nærliggende Hellmann målere fra DMI's net af manuelle nedbørsmålere.

1.2 Projektformål og indhold

Formålet med nærværende projekt er at opbygge en regional model til beskrivelse af ekstremregn i Danmark på basis af en systematisk statistisk bearbejdning af nedbørsmålinger fra regnmålersystemet. Det tilgængelige datamateriale udgør nedbørsmålinger frem til den 1. januar 1997, og de længste regnserier er således omkring 25% længere end de regnserier, der har været benyttet i de hidtidige analyser. Udgangspunktet for den statistiske analyse er den regionale PDS model beskrevet i Madsen et al. (1994). Derudover introduceres nye metoder, der har vundet indpas indenfor statistisk hydrologi i de senere år.

I Afsnit 2 gives en generel beskrivelse af regnmålersystemet og den udførte kvalitetskontrol af nedbørsmålingerne. I Afsnit 3 defineres de nedbørsvariable der undergår en nærmere regional analyse i de følgende afsnit, og den benyttede ekstremværdimodel introduceres. Desuden præsenteres basis statistik for de analyserede ekstremværdiserier. Til en indledende vurdering af ekstremværdiserierne med hensyn til regional variabilitet og valg af statistisk model introduceres L-moment analyse i Afsnit 4. I Afsnit 5 introduceres en regional middelværdimodel, der benyttes til estimation af regionale PDS parametre med tilhørende usikkerhedsmål. Baseret på middelværdimodellen bestemmes derefter et regionalt T-års estimat og tilhørende usikkerhed, der inkluderer både statistiske usikkerheder, korrigeret for korrelation mellem stationerne, og en residual modelusikkerhed grundet den regionale variabilitet. For de PDS parametre, der udviser en signifikant regional variabilitet introduceres i Afsnit 6 en regressionsmodel, hvor modelparametrene relateres til relevante fysiografiske og klimatiske karakteristika. Den resulterende regionale model for PDS parametrene benyttes derefter til estimation af Tårs hændelsen og tilhørende usikkerhed, hvor usikkerheden i dette tilfælde inkluderer statistiske usikkerheder samt residual modelusikkerhed, som ikke kan forklares af regressionsmodellen. På basis af den formulerede regionale model gives i Afsnit 7 en vurdering af de enkelte historiske regnserier med henblik på anvendelse i numeriske modeller, således at den regionale variabilitet og de statistiske usikkerheder kan tages i regning i afløbstekniske beregninger. Opsummering af de opnåede resultater og konklusioner gives i Afsnit 8.

2. Regndata

2.1 Automatiske nedbørsmålere

En fortegnelse over de regnmålere der er eller har været tilsluttet DMI's net af automatiske nedbørsmålere fremgår af Appendiks A. I alt har der været tilsluttet 90 stationer siden opstarten den 1. januar 1979. Heraf er 72 stationer tilknyttet SVK's regnmålersystem og er ejet af de enkelte kommuner/amter, mens de resterende 18 stationer er ejet af DMI og er placeret i tilknytning til DMI's generelle observationssystem.

Regnmålerne tilknyttet målernettet er RIMCO vippekarsmålere med en opløsning på 0.2 mm, svarende til et vip. De enkelte vip registreres i måleren med en sampling frekvens på et minut og transmitteres via telefonnettet til DMI. Til brug i afløbstekniske beregninger omregnes de rå data til adskilte regnhændelser bestående af regnintensiteter i et minuts intervaller, det såkaldte KMD format (Figur 2.1). En nedbørshændelse er i denne forbindelse defineret som en hændelse med mindst to vip, og hvor tidsafstanden mellem to på hinanden følgende vip er mindre end 60 minutter.

1 940629	736 2	23345	48 1	. 9.4	1					
3.333	1.667	1.667	1.667	1.667	3.333	53.333	3.333	6.667	1.667	
5.000	3.333	6.667	13.333	33.333	6.667	3.333	0.833	0.833	0.833	
0.833	0.123	0.123	0.123	0.123	0.123	0.123	0.123	0.120	0.123	
0.123	0.123	0.123	0.123	0.123	0.123	0.123	0.123	0.123	0.123	
0.123	0.123	0.123	0.123	0.123	0.123	0.123	0.123			
1. linie:										
felt 1-1	Ko	ontrolteg	n (=1)							
felt 3-8	Sta	art på hæ	endelse,	år-måne	d-dag					
felt 10-13	Sta	Start på hændelse, time-minut								
felt 16-20	Sta	ationsnu	mmer							
felt 23-26	Ha	endelsen	s længd	le i minu	tter					
felt 29-29	Int	egration	speriod	e i minut	ter (=1)					
felt 30-36	Ne	Nedbørsmængde i [mm]								
felt 38-42	Statusinformation									
Efterfølgende linier:										

For hvert minut angives minutintensiteten i $[\mu m/s]$

Figur 2.1 KMD format af nedbørshændelser.

De i denne rapport benyttede regndata er udtrukket fra DMI's database den 1. januar 1997, og den længste regnserie består således af 18 års observationer. Der er på DMI løbende ført registreringer over perioder, hvor de enkelte regnmålere har været ude af drift. Korte perioder uden målinger optræder hovedsageligt i forbindelse med tekniske fejl på målerne eller i datatransmissionen, mens længere varende perioder uden målinger skyldes nedtagning af måleren i forbindelse med ombygning og lignende. For de enkelte stationer er driftsperiode og den samlede tid uden målinger angivet i Appendiks A. I alt har målerne været ude af drift i 7.7 % af tiden. I det følgende benyttes den korrigerede periode, driftsperiode minus perioder uden målinger, som observationsperiodens længde. I alt udgør det foreliggende datamateriale således ca. 850 stationsår.

2.2 Kvalitetskontrol

De registrerede regnhændelser har på DMI undergået forskellige former for kvalitetskontrol. Kvalitetsmarkeringen fremgår af overskriftsposten (første linie) for regnhændelsen i KMD format, se Figur 2.1:

Kontrolstatus (felt 38)

- 0 Hændelsen er ukontrolleret
- 1 Hændelsen er kontrolleret og fundet OK
- 2 Hændelsen bør eventuelt forkastes

Grund til eventuel forkastelse (felt 39-42)

- e Ekstrem nedbørsmåling i hændelsen
- d Afvigelse fra nærliggende Hellmann målere.
- t Tekniske fejl under hændelsen.
- a Hændelsen kan være afbrudt på grund af de angivne tidsintervaller.

2e-markering

Samtlige hændelser der indeholder en ekstrem minutintensitet større end eller lig 2 mm/min (33.33 μ m/s), undergår en nærmere manuel kontrol på DMI. Denne kontrol består af følgende elementer:

- (1) I første omgang betragtes vejrkort for at vurdere om en ekstrem regn kan have forekommet på det pågældende tidspunkt, dvs. en vurdering af om den betragtede hændelse er opstået i forbindelse med et frontsystem eller som en byge.
- (2) Døgnnedbøren målt på SVK måleren sammenholdes med døgnnedbøren målt på nærliggende manuelle DMI målere (Hellmann målere).
- (3) Formen af hyetografen betragtes. For realistiske ekstreme minutintensiteter vil der både før og efter det pågældende minut være registreret noget nedbør.
- (4) Hvis hændelsen udfra (1)-(3) virker suspekt, inddrages vejrkort på ny for at foretage en endelig vurdering af om hændelsen bør forkastes.

I databasen er markeringen i forbindelse med den manuelle kontrol af hændelser med ekstreme minutintensiteter foretaget fra 1. januar 1993. For perioden 1. januar 1979 til 31. december 1992 har samtlige hændelser, der indeholder en ekstrem minutintensitet (\geq 2 mm/min) fået markeringen 2*e* (dog med enkelte undtagelser ved stationerne 27031, 28183, 30221, 30222, 30314, 30318, 30319, 30321 og 30353).

I forbindelse med to eksamensprojekter udført på Danmarks Tekniske Universitet i efteråret 1992 blev samtlige hændelser frem til den 26. september 1992 med ekstreme minutintensiteter undergået en manuel kontrol på DMI, følgende de samme elementer som beskrevet i (1)-(4) ovenfor. I Arnbjerg-Nielsen (1993) og Madsen (1993) er der givet en oversigt over de i alt 152 hændelser, der blev forkastet i denne forbindelse.

Station	Dato	Tid	Varighed [min]	Dybde [mm]	Max int. [µm/s]
32097	930812	1837	26	12.2	73.3
22421	830801	1452	14	19.0	70.0
24292	800713	1423	125	59.2	70.0
30315	830521	2230	29	12.4	70.0
29009	920903	640	22	18.4	66.7
29429	950721	2241	81	15.6	66.7
30319	910628	1241	728	49.6	66.7
30321	830521	2231	17	13.6	66.7
30317	950721	2337	7	5.8	65.0
23261	850714	2206	37	12.0	63.3
28183	790622	1528	54	60.2	63.3
30031	800714	823	57	24.2	63.3
30381	940629	1131	21	16.8	56.7
20211	790622	1304	117	28.8	53.3
20211	880704	1508	86	30.2	53.3
23345	940629	736	48	9.4	53.3
25101	920812	228	30	7.2	53.3
26091	880701	2011	60	15.8	53.3
29041	960801	1725	64	22.0	53.3
30168	950716	1235	19	10.0	53.3
30223	830521	2243	22	10.8	53.3
30321	800612	744	393	58.2	53.3
30326	950721	2342	31	5.8	53.3

Tabel 2.1 Godkendte hændelser med minutintensiteter større end eller lig 3.2 mm/min (53.3 μm/s).

I dette projekt er samtlige hændelser med ekstreme minutintensiteter blevet kontrolleret. Det drejer sig om i alt 538 hændelser, jvf. Appendiks B. Kontrollen er her foretaget ved undersøgelse af hyetografens form, hvilket i langt de fleste tilfælde vil give en klar indikation af, om hændelsen er realistisk eller bør forkastes. Kontrollen giver anledning til følgende bemærkninger:

• For perioden før 26. september 1992 er der 7 hændelser, der oprindeligt er godkendt af DMI men som bør markeres med 2e grundet en suspekt hyetograf (hændelser mærket B i Appendiks B). Resten af hændelserne i denne periode er i overensstemmelse med DMI's oprindelige markering. Hændelser der er godkendt og har fået statusmarkering 1 er mærket A i Appendiks B. Bemærk at der er 3 hændelser ved station 27021 i november og december 1991, der er mærket 1 men som bør markeres med 2e (mærket C i Appendiks B), også i overensstemmelse med DMI's oprindelige markering.

- For hændelser registreret i perioden 27. september til 31. december 1992 har der ikke tidligere været foretaget kvalitetskontrol af hændelser med ekstreme minutintensiteter. I alt er der i denne periode registreret 29 hændelser (mærket D i Appendiks B). Baseret alene på vurdering af hyetografens form, dvs. ikke fuldt kontrolleret jvf. ovenstående beskrivelse (1)-(4), har samtlige af disse hændelser fået statusmarkeringen 2*e*.
- For perioden fra 1. januar 1993 til 31. december 1996 er der 4 hændelser, der er godkendt af DMI men som bør markeres med 2*e* grundet en suspekt hyetograf (mærket E i Appendiks B).

Den ny status for hændelser med ekstreme minutintensiteter, jvf. Appendiks B, er benyttet i dette projekt. Det betyder, at den maksimalt godkendte minutintensitet er 73.3 μ m/s = 4.4 mm/minut registreret ved station 32097 den 12. august 1993. En oversigt over godkendte hændelser med de mest ekstreme minutintensiteter er vist i Tabel 2.1.

Medtagelse af hændelser med urealistisk høje intensiteter kan i afløbstekniske analyser resultere i fejlagtige overdimensioneringer, og samtlige 2e-hændelser er derfor forkastet i den følgende analyse.

2d-markering

Markeringen 2*d* er påført i det tilfælde, hvor døgnnedbøren for SVK måleren afviger fra døgnnedbøren målt på nærliggende Hellmann målere. Hellmann målerne tømmes året rundt kl. 8 dansk tid, mens døgnsummen for SVK måleren beregnes fra kl. 06.00 UTC. I perioder med dansk sommertid er de to døgn derfor tidsmæssigt ens, mens døgnene er forskudt en time i perioder med dansk vintertid.

DMI's kontrolprocedure er identisk med proceduren for kontrol af hændelser med ekstreme minutintensiteter (punkt (1)-(4) ovenfor), idet døgnnedbør, vejrkort og hyetografer kombineres ved vurdering af hændelsen. Der er ikke fastlagt et bestemt kriterium for uoverensstemmelsen mellem SVK døgnnedbør og døgnnedbør for omkringliggende Hellmann målere, der giver anledning til en 2*d*-markering. Dette skyldes, at døgnnedbøren kan variere betydeligt fra måler til måler, især hvis der er tale om konvektive regn. Derfor inddrages også vejrkort og hyetografens form ved vurdering af døgnnedbøren.

Den manuelle kontrol af døgnnedbøren fra SVK målerne startede den 1. januar 1993, hvorfor 2d-markeringen kun forefindes i databasen fra denne dato. I alt optræder 2167 hændelser i databasen med markeringen 2d, svarende til omkring 4% af samtlige registrerede hændelser efter 1. januar 1993.

En umiddelbar forkastelse af alle 2d-hændelser er yderst problematisk. For det første er markeringen kun foretaget i de sidste 4 år, og en forkastelse af 4% af samtlige hændelser i denne periode kan derfor medføre ikke-homogene tidsserier. For det andet er det ikke umiddelbart muligt at kvantificere den spatiale interpolationsfejl samt forskelle mellem

forskellige målemetoder, hvorfor 2*d*-markeringen er meget subjektiv. Endelig bør det bemærkes, at afvigelser på døgnnedbøren ikke nødvendigvis er kritisk for analysen af egenskaber ved ekstremregn, der er kritiske for funktionen af afløbssystemer. Udgangspunktet er derfor, at 2*d*-hændelser medtages i den følgende analyse.

2t-markering

Markeringen 2t er påført i det tilfælde, hvor der er observeret stationsnedbrud grundet tekniske fejl under den pågældende regnhændelse. Tekniske fejl er i denne sammenhæng kabelbrud, service på måler, strømudfald på stationen eller fejl i transmissionslinien.

Hvis en måler har haft fejl i sammenlagt mere end 10 minutter på en time, fremgår dette af den automatiske bitmarkering på den efterfølgende timestatus (Cappelen, 1993). Hvis en måler har registreret en hændelse, og en eller flere timestatus markeringer under eller umiddelbart efter hændelsen angiver, at der har været tale om tekniske fejl i den forudgående time, vil den pågældende hændelse få markeringen 2*t*. Idet markeringen af tekniske fejl er en del af den automatiske bitmarkering, er 2*t*-markeringen ført tilbage til måleropstart den 1. januar 1979.

For en hændelse markeret med 2t gælder, at hændelsen kan være startet før det første vip, sluttet senere end det sidste vip eller mangle vip. Hvis perioden med stationsnedbrud udgør mere end 60 minutter vil en eventuel regnhændelse blive betragtet som to adskilte hændelser. Den eneste fejl i 2t-hændelser er derfor den registrerede regndybde, som vil være mindre end den sande regndybde for hændelsen. I afløbsteknisk sammenhæng vil medtagelse af disse hændelser ikke give anledning til fejlagtige overdimensioneringer. I modsat fald, hvis hændelserne forkastes, kan det medføre, at værdifuld information omkring ekstreme regnintensiteter går tabt. Samtlige 2t-hændelser er derfor medtaget i den følgende analyse.

2a-markering

2*a*-markeringen indikerer, at den pågældende hændelse har været afbrudt i forhold til de angivne tidsintervaller. Dette vil optræde dels ved opstart af måler (det regner, når registreringer påbegyndes) dels ved lukning af måler eller ved udtræk fra database.

Som for 2t-hændelser, er den eneste fejl i 2a-hændelser den underestimerede regndybde, og samtlige 2a-hændelser er derfor medtaget i den følgende analyse.

En oversigt over kvalitetskontrollen udført af DMI samt markeringen i DMI's database fremgår af Tabel 2.2. En oversigt over kontrolstatus for regnserier benyttet i dette projekt, samt hvilke hændelser der er medtaget i den efterfølgende analyse fremgår af Tabel 2.3.

	Periode						
Markering	1/1 1979 - 26/9 1992	27/9 1992 - 31/12 1992	Fra 1/1 1993				
2 <i>e</i>	Manuel kontrol, ikke indført i database	Ikke kontrolleret	Manuel kontrol, indført i database				
2 <i>d</i>	Ikke kontrolleret	Ikke kontrolleret	Manuel kontrol, indført i database				
2 <i>t</i>	Automatisk kontrol, indført i database	Automatisk kontrol, indført i database	Automatisk kontrol, indført i database				
2a	Automatisk kontrol, indført i database	Automatisk kontrol, indført i database	Automatisk kontrol, indført i database				

Tabel 2.2Kontrol og statusmarkering i DMI's database.

Tabel 2.3Kontrolstatus for hændelser benyttet i dette projekt samt oversigt over hvilke
hændelser der er medtaget i ekstremværdianalysen.

Markering	Kontrolstatus	Medtaget i analysen
2 <i>e</i>	Samtlige hændelser i perioden $1/1$ 1979 – $1/1$ 1997 med minutintensitet ≥ 2 mm/min er kontrolleret. Ikke godkendte hændelser er markeret med $2e$.	Ikke medtaget
2 <i>d</i>	DMI's statusmarkering for perioden 1/1 1993 – 1/1 1997.	Medtaget
2 <i>t</i>	DMI's statusmarkering for hele perioden 1/1 1979 – 1/1 1997.	Medtaget
2a	DMI's statusmarkering for hele perioden 1/1 1979 – 1/1 1997.	Medtaget

3. Ekstremværdiserier

3.1 Analyserede variable

Til beskrivelse af karakteristika for ekstremregn analyseres forskellige variable, der alle beregnes på basis af de registrerede nedbørshændelser i KMD format. To typer af variable betragtes:

- (1) Maksimum intensiteter af individuelle nedbørshændelser for forskellige varigheder.
- (2) Volumen variable baseret på integration indenfor den enkelte nedbørshændelse, indenfor et fast tidsinterval eller indenfor en given belastningsperiode for afløbs-systemet som funktion af systemets opbygning.

Maksimal middelintensitet

Lad I(t) benævne nedbørsintensiteten til tiden t. Middelintensiteten over varigheden t er givet ved

$$Y(t) = \frac{\int_{t-t/2}^{t+t/2} I(\mathbf{x}) d\mathbf{x}}{t}$$
(3.1)

En nedbørshændelse relateret til varigheden t kan defineres som en ubrudt sekvens af positive Y(t), se Figur 3.1. Lad t_{0i} og t_{1i} betegne henholdsvis starttidspunkt og sluttidspunkt for den herved definerede nedbørshændelse. Den maksimale middelintensitet med varighed t for hændelsen er da givet ved

$$Z_{i} = Max \{ Y(t), t_{0i} \le t \le t_{1i} \}$$
(3.2)

Med den herved benyttede definition regnes to regnhændelser for uafhængige såfremt tiden mellem de to hændelser er større end t, dvs. uafhængighedsbegrebet afhænger af den betragtede varighed. Eftersom KMD formatet opererer med regnhændelser adskilt af tørvejr af minimum en times varighed kan ovenstående definition ikke benyttes for varigheder under 60 minutter. For t < 60 minutter benyttes derfor KMD definitionen til fastlæggelse af uafhængige regnhændelser.

I det følgende betragtes maksimale middelintensiteter for varighederne t = 10 min., 30 min., 60 min., 3 timer, 6 timer, 12 timer, 24 timer, og 48 timer. De maksimale middelintensiteter benævnes i det følgende 10 min. intensitet, 30 min. intensitet etc. og angives i enheden [μ m/s].

Figur 3.1 Definition af maksimal middelintensitet med varigheden t for individuelle regnhændelser. I(t) er nedbørsintensiteten, Y(t) er middelintensiteten og Z_i er den maksimale middelintensitet.

Volumen variable

Fire forskellige volumen variable betragtes:

- den totale nedbørsmængde for individuelle regnhændelser (herefter benævnt regndybde).
- den totale nedbørsmængde indenfor ét døgn (døgnnedbør).
- nødvendigt volumen for tilbageholdelse af regn i bassin (bassinvolumen).

• volumen af overløb fra bassin (overløbsvolumen).

Alle volumen variable angives i enheden [mm].

Regndybden er defineret ved

$$Z_{i} = \int_{t_{0i}}^{t_{1i}} I(\mathbf{x}) d\mathbf{x}$$
(3.3)

hvor t_{0i} og t_{1i} angiver henholdsvis start- og sluttidspunkt for den *i*'te hændelse. Til definition af adskilte regnhændelser benyttes KMD definitionen.

Døgnnedbøren er defineret ved

$$Z_{i} = \int_{t_{0}}^{t_{0}+\Delta t} I(\mathbf{x}) d\mathbf{x} \quad , \Delta t = 24 \ timer$$
(3.4)

hvor t_0 er taget til kl. 06.00 UTC. For dansk sommertid svarer t_0 således til aflæsningstidspunktet for de manuelle Hellmann målere.

Det nødvendige bassinvolumen til tiden t er givet ved

$$Y(t) = \begin{cases} Y(t-1) + I(t) - a & \text{, hvis positiv} \\ 0 & \text{, ellers} \end{cases}$$
(3.5)

hvor *a* er afløbstallet. En hændelse er i denne sammenhæng defineret som en ubrudt sekvens af positive Y(t) (svarende til definitionen af uafhængige regnhændelser, jvf. Figur 3.1), og det nødvendige bassinvolumen for hændelsen er da givet ved

$$Z_{i} = Max \{ Y(t), t_{0i} \le t \le t_{1i} \}$$
(3.6)

hvor t_{0i} og t_{1i} er henholdsvis start- og sluttidspunkt for den *i*'te hændelse. I det følgende betragtes bassinvolumen for to forskellige afløbstal, henholdsvis $a = 0.1 \mu m/s$ og $a = 1.0 \mu m/s$.

Overløbsvandføringen til tiden *t*, under forudsætning af at intet magasineringsvolumen er til stede, er givet ved

$$Y(t) = \begin{cases} I(t) - a & \text{, hvis positiv} \\ 0 & \text{, ellers} \end{cases}$$
(3.7)

Overløbsvolumen for den i'te hændelse er da defineret som

$$Z_{i} = \int_{t_{0i}}^{t_{1i}} Y(\boldsymbol{x}) d\boldsymbol{x}$$
(3.8)

hvor KMD definition er benyttet til fastlæggelse af uafhængige regnhændelser. Som for bassinvolumen betragtes overløbsvolumen for to forskellige afløbstal, $a = 0.1 \,\mu\text{m/s}$ og $a = 1.0 \,\mu\text{m/s}$. Det bemærkes, at der ved de således beregnede bassin- og overløbsvoluminer ses bort fra betydningen af oplandets koncentrationstid (udjævning af hydrografen ved tilløb til et bygværk).

Symboler for de ovenfor definerede variable, der benyttes i det følgende, fremgår af Tabel 3.1.

Variabel	Symbol
10 min. intensitet	i10m
30 min. intensitet	i30m
60 min. intensitet	i60m
3 timers intensitet	i3h
6 timers intensitet	i6h
12 timers intensitet	i12h
24 timers intensitet	i24h
48 timers intensitet	i48h
Regndybde (dybde per hændelse)	dph
Døgnnedbør (d ybde p er d øgn)	dpd
Bassinvolumen, $a = 0.1 \mu\text{m/s}$	bv1
Bassinvolumen, $a = 1.0 \mu\text{m/s}$	bv2
Overløbsvolumen, $a = 0.1 \mu\text{m/s}$	ov1
Overløbsvolumen, $a = 1.0 \mu\text{m/s}$	ov2

Tabel 3.1 Symbolliste for analyserede variable.

3.2 Ekstremværdimodel

I det følgende beskrives en af de ovenfor definerede regnkarakteristika ved en stokastisk variabel Z med observationer $\{z_i, i = 1, 2, ..., N\}$. Formålet med ekstremværdianalyse er på baggrund af observationerne at fastlægge (estimere) ekstremværdikarakteristika for den stokastiske variabel. Ekstremværdipopulationen tillægges i denne sammenhæng en sandsynlighedsfortolkning, hvor et givet niveau af Z kan udtrykkes ved en tilhørende overskridelsessandsynlighed p eller gentagelsesperiode T. Tilsvarende angiver T-års hændelsen Z_T det niveau, der i gennemsnit overskrides en gang per T år.

En simpel ikke-parametrisk metode til estimation af *T*-års hændelser består i at tildele empiriske overskridelsessandsynligheder til de rangordnede observationer $z_{(1)} \ge z_{(2)} \ge ... \ge z_{(N)}$. Eksempelvis kan man tildele den største observation $z_{(1)}$ i observationsperioden på tår en gentagelsesperiode på $T_1 = t$ år, den næststørste observation $z_{(2)}$ en gentagelsesperiode på $T_2 = t/2$ år etc. Mere generelt, til bestemmelse af empiriske overskridelsessandsynligheder (også benævnt plottesandsynligheder) eksisterer adskillige plotningsformler baseret på forskellige statistiske principper. Her skal blot nævnes den såkaldte median plotningsformel, hvor den empiriske overskridelsessandsynlighed p_i og gentagelsesperiode T_i for den *i*'te rangordnede observation $z_{(i)}$ er givet ved

$$p_i = \frac{i - 0.3}{N + 0.4} = \frac{t}{NT_i} \quad ; \quad T_i \approx \frac{t}{i - 0.3} \tag{3.9}$$

En afbildning af $z_{(i)}$ vs. p_i eller T_i giver den empiriske fordeling af ekstremværdiserien. Som eksempel er de empiriske fordelinger for 10 min. intensiteten vist i Figur 3.2. for de 41 stationer med observationsperiode større end 10 år (se Appendiks A).

Figur 3.2 Empiriske fordelinger af 10 min. intensiteten for de 41 stationer med observationsperiode på mere end 10 år.

Baseret på den empiriske fordeling er det muligt at bestemme et estimat af T-års hændelsen ved interpolation. Ekstrapolation er derimod ikke umiddelbart muligt, og generelt giver den ikke-parametriske estimationsmetode store usikkerheder for gentagelsesperioder større end omkring t/4. For estimation af T-års hændelser for vilkårlig gentagelsesperiode er det nødvendigt at introducere parametriske estimationsmetoder, hvor en statistisk fordeling tilpasses de observerede ekstremværdier. I det følgende betragtes udelukkende parametrisk modellering.

Det første trin i den parametriske modellering er fastlæggelse af ekstremværdipopulationen. Her benyttes den såkaldte overskridelsesmodel (Partial Duration Series (PDS) model), hvor ekstremværdipopulationen inkluderer hændelser over et fastlagt afskæringsniveau. Generelt er der to forskellige metoder til fastlæggelse af overskridelsesserien. Dels ved direkte at introducere et afskæringsniveau z_0 og betragte hændelser over dette niveau { $z_i > z_0$, i = 1, 2, ..., N}, benævnt Type I sampling, og dels indirekte ved at medtage de *n* største hændelser $\{z_{(1)} \ge z_{(2)} \ge ... \ge z_{(n)}, i = 1, 2, ..., N\}$, benævnt Type II sampling. Type I sampling svarer til at indlægge en afskæring parallelt med x-aksen i Figur 3.2, mens Type II sampling svarer til en afskæring parallelt med y-aksen. Her benyttes Type I sampling, og det samme afskæringsniveau z_0 benyttes for samtlige stationer, svarende til PDS modellen introduceret i nedbørsmodellering af Madsen et al. (1994). Et eksempel på brug af Type II sampling i PDS nedbørsmodellering kan findes i Mikkelsen et al. (1995, 1996).

Benævn med X den stokastiske variabel for overskridelserne {Z - z_0 , Z > z_0 } med observationer { x_i , i = 1, 2, ..., n}. PDS modellen består af to elementer, dels modellering af forekomsten af overskridelser og dels modellering af overskridelsernes størrelse. Normalt antages, at forekomsten af overskridelserne kan beskrives ved en Poisson proces med konstant eller årlig periodisk varierende intensitet. Herved følger, at antallet af overskridelser kan beskrives ved en Poisson fordeling med intensitet I, der er lig med det forventede antal årlige overskridelser. Til modellering af overskridelsernes størrelse X benyttes en statistisk fordeling med fordelingsfunktion $F(x;\underline{a})$, hvor \underline{a} er fordelingens parametre. Traditionelt er eksponentialfordelingen, som er en én-parameter fordeling, blevet benyttet i PDS modellering. Forskellige to-parameter fordelinger er tillige blevet foreslået, bl.a. den generaliserede Pareto fordeling, Weibull fordelingen, gamma fordelingen.

I PDS modellen bestemmes T-års hændelsen som (1-1/lT)-fraktilen i fordelingen af X

$$\mathbf{F}(x_T;\underline{\mathbf{a}}) = 1 - \frac{1}{\mathbf{l}T} \quad , \quad z_T = z_0 + \mathbf{F}^{-1} \left(1 - \frac{1}{\mathbf{l}T};\underline{\mathbf{a}} \right)$$
(3.10)

Et estimat af *T*-års hændelsen bestemmes da af (3.10) ved indsættelse af estimater af modelparametrene \mathbf{l} og $\underline{\mathbf{a}}$. Et estimat af Poisson parameteren er givet som det gennemsnitlige antal observerede overskridelser per år: $\hat{\mathbf{l}} = n/t$ (en "hat" indikerer her og i det følgende et estimat af den givne parameter). Til estimation af modelparametrene $\underline{\mathbf{a}}$, på basis af de observerede overskridelser $\{x_i, i = 1, 2, ..., n\}$, eksisterer adskillige metoder baseret på forskellige statistiske principper, eksempelvis moment metoden, maksimum likelihood metoden m.fl.

3.3 Basis statistik

Af de 90 til rådighed værende stationer med nedbørsregistreringer inddrages i den følgende analyse kun de stationer, der har mere end 10 års observationer (korrigeret observationsperiode). Det drejer sig om i alt 41 stationer, jvf. Appendiks A, og disse stationer udgør ca. 650 stationsår ud af det samlede datamateriale på i alt 850 stationsår.

Det første punkt i PDS analysen er fastlæggelse af afskæringsniveauet. Vigtigt er det ikke at vælge afskæringsniveauet for lavt, idet observationer, der ikke kan antages at tilhøre ekstremværdipopulationen, da inddrages i analysen og kan give mere "støj" end information i estimation af ekstremværdikarakteristika. På den anden side set bør afskæringsniveauet ikke vælges for højt, idet der da ses bort fra værdifuld information.

I litteraturen er der blev foreslået adskillige mere eller mindre subjektive metoder til fastlæggelse af afskæringsniveauet i PDS modellering. Mange af disse metoder er baseret på analyse af enkelte tidsserier og beror på valg af afskæringsniveau, således at grundlæggende statistiske antagelser, såsom Poisson antagelsen for fremkomst af overskridelser og en given fordelingsfunktion for overskridelsernes størrelse, er opfyldt (Ashkar & Rouselle, 1987; Davison & Smith, 1990). Generelt er disse metoder meget subjektive, idet de ikke giver entydige løsninger og afhænger af den enkelte persons præference for benyttelse af en given fordelingsfunktion. I regional sammenhæng, hvor adskillige tidsserier inddrages og den regionale variabilitet skal analyseres, er det vigtigt at benytte mere objektive metoder. I denne sammenhæng er det blevet foreslået at benytte en tilpas høj fraktil i fordelingen af den betragtede variabel som afskæringsniveau. F.eks. blev der i Madsen et al. (1994) benyttet et afskæringsniveau svarende til middelværdien plus 3.5 gange spredningen af den betragtede variabel.

Et konsistent valg af afskæringsniveau følgende de samme retningslinier som benyttet i Madsen et al. (1994) er ikke umiddelbart muligt i denne sammenhæng, idet hændelsesdefinitionen afhænger af den betragtede variabel (i Madsen et al. (1994) blev samme hændelsesdefinition benyttet for de involverede variable). I stedet bestemmes afskæringsniveauet individuelt for hver variabel ud fra en sensitivitetsanalyse af middel ekstremværdikarakteristika over samtlige stationer som funktion af afskæringsniveauet. Desuden inddrages information omkring antallet af overskridelser, således at valg af afskæringsniveau giver et gennemsnitligt antal overskridelser på omkring 2.5 - 3.5 per år. De herved valgte afskæringsniveauer for de enkelte variable er givet i Tabel 3.2.

		Poisson par.		Middelværdi		Spredning		Skævhed	
Variabel	<i>z</i> 0 [μm/s] [mm]	Middel [år ⁻¹]	CV	Middel [µm/s] [mm]	CV	Middel [µm/s] [mm]	CV	Middel	CV
i10m	6.00	3.22	0.19	3.34	0.16	3.54	0.28	1.92	0.43
i30m	3.20	3.11	0.21	1.60	0.15	1.77	0.25	1.92	0.44
i60m	2.10	3.13	0.21	0.937	0.12	1.02	0.24	1.98	0.40
i3h	1.10	3.02	0.20	0.449	0.15	0.487	0.25	2.05	0.36
i6h	0.730	2.83	0.19	0.277	0.17	0.316	0.24	2.11	0.32
i12h	0.450	2.53	0.23	0.184	0.19	0.201	0.22	1.97	0.33
i24h	0.260	2.65	0.29	0.114	0.21	0.127	0.23	1.93	0.42
i48h	0.150	3.04	0.30	0.0684	0.20	0.0750	0.26	1.89	0.36
dph	17.2	3.09	0.19	8.42	0.20	9.90	0.27	2.26	0.41
dpd	19.4	2.95	0.25	8.17	0.20	8.35	0.20	1.87	0.41
bv1	17.0	2.82	0.26	11.0	0.21	13.0	0.29	2.01	0.37
bv2	5.40	2.85	0.20	4.46	0.15	5.38	0.28	2.35	0.34
ov1	15.0	2.95	0.20	7.74	0.21	9.26	0.26	2.24	0.39
ov2	6.80	2.89	0.22	4.99	0.14	5.79	0.26	2.24	0.31

Tabel 3.2Afskæringsniveau (z_0) samt regional middelværdi og variationskoefficient
(CV) for Poisson parameter og middelværdi, spredning og skævhed af
overskridelserne.

For de betragtede variable er basis statistik for de 41 ekstremværdiserier vist i Tabel 3.2, inkluderende regional middelværdi og variationskoefficient (spredning divideret med middelværdi) for det gennemsnitlige antal årlige overskridelser samt middelværdi, spredning og skævhed for overskridelsernes størrelse.

3.4 Analyse af stationaritet

En vigtig antagelse i PDS modellen er, at ekstremværdipopulationen er stationær, dvs. data bør ikke udvise nogen form for trend eller pludselige skift. For samtlige ekstremværdiserier er der derfor foretaget en stationaritetsanalyse. To forskellige trend tests er benyttet, henholdsvis lineær regressionstest og Mann-Kendall test (også kendt som Kendalls tau test).

Det lineære regressionstest er et såkaldt parametrisk test, der forudsætter normal fordelte data, og trenden der ønskes testet antages at være lineær. Mann-Kendall testet er derimod et ikke-parametrisk test for undersøgelse af en vilkårlig opadgående eller nedadgående trend i tidsserien. Regressionstestet har generelt den største styrke, men for data der er meget skæve og/eller udviser ikke lineær trends vil Mann-Kendall testet have større styrke. Der testes ikke eksplicit for pludselige skift i tidsserien. Det må antages at sådanne skift i langt de fleste tilfælde vil kunne detekteres af trend testene.

I Tabel 3.3 er hovedresultaterne af trend analysen opsummeret. For ingen af stationerne udviser samtlige analyserede variable en signifikant trend. For enkelte stationer er der dog flere variable, der udviser signifikant trend i samme retning (se Tabel 3.3) og derfor indikerer en eventuel ikke-stationaritet for den pågældende nedbørsmåler.

Station	Variable	Trend
22361	i30m, i6h	neg.
22421	i12h, i24h, dph, dpd	neg.
23321	i3h, i6h	pos.
24292	i12h, i24h, dpd, bv2	neg.
26091	i30m, i60m, i3h, bv2, ov2	pos.
28184	i12h, i48h	neg.
28186	i12h, ov2	neg.
30221	i30m, i60m	pos.
30222	i10m, i30m	pos.

Tabel 3.3 Stationer hvor to eller flere variable udviser signifikante trends (på 5% signifikansniveau) i samme retning for et af de to tests.

Trends eller skift i ekstremværdiserierne kan skyldes flere faktorer. En væsentlig faktor er givet ændrede læforhold ved måleren grundet f.eks. gradvist voksende bevoksning, fældning af bevoksning eller flytning af måleren. Et eksempel på betydningen af gradvist ændrede læforhold er vist i Figur 3.3 for 48 timers intensiteten målt ved station 30352.

Her er PDS tidsserien vist sammen med målinger udført af DMI af målerens læindeks, beregnet som middelværdien af højdevinklen (vinkel mellem nedbørsmålerens overkant og lægiverens overkant) målt i 8 retninger kompasrosen rundt. Den opadgående trend af de ekstreme hændelser i Figur 3.3 ses at være stærkt korreleret med det stigende læindeks.

Figur 3.3 PDS tidsserie af 48 timers intensiteten ved station 30352 sammenholdt med læindeks.

Ovenstående eksempel illustrerer problematikken omkring indflydelsen af ændrede næromgivelser på nedbørsmålingerne. Det er dog ikke muligt på grundlag af det foreliggende datamateriale at redegøre for, hvor stor betydning eventuelle ændringer har på målinger af ekstrem nedbør. Dels er tidsserierne korte, dels er oplysninger omkring ændring i læindeks sparsomme, og dels kan andre faktorer have betydning. Det er derfor besluttet at medtage samtlige stationer i den videre analyse. I Afsnit 6 vil indflydelsen af læforholdet i forbindelse med kvantificering af den regionale variabilitet blive diskuteret nærmere.

3.5 Regional modellering

Variationskoefficienten (CV) i Tabel 3.2 er et mål for den regionale variabilitet, som vil blive analyseret nærmere i de følgende afsnit. Her skal blot bemærkes, at den regionale variabilitet er større for højere ordens momenter (CV for skævheden er større end CV for spredningen, som til gengæld er større end CV for middelværdien), hvilket ofte observeres i regionale analyser. Det betyder dog ikke, at den "sande" regionale variabilitet er større for højere ordens momenter, men afspejler det faktum, at der er større statistiske usikkerheder tilknyttet estimation af højere ordens momenter.

Den umiddelbare regionale variabilitet er også anskueliggjort i Figur 3.2. Variabiliteten af de empiriske fordelinger kan opdeles i flere bidrag hidrørende fra forskellige statistiske karakteristika af ekstremværdiserierne. For eksempel er spredningen af serierne ved afskæring parallelt med x-aksen et udtryk for variabiliteten af Poisson parameteren. Dette kan ses af (3.10), idet gentagelsesperioden for overskridelser over afskæringsniveauet z_0 er T = 1/I. Ved at foretage en skalering af gentagelsesperioden for hver station $T^* = TI/I_R$, hvor I_R er en referenceværdi for Poisson parameteren (eksempelvis taget som den regionale middelværdi), kan effekten af variabiliteten af I elimineres. Dette er illustreret i Figur 3.4. Heraf ses, at variabiliteten af I især har betydning for små gentagelsesperioder (kurverne udviser betydelig mindre spredning for små T end i Figur 3.2).

En anden type variabilitet i Figur 3.2 hidrører fra forskelle i overskridelserne mellem stationerne. Niveauforskel af kurverne kan eksempelvis forklares af forskel i middelværdien af overskridelsernes størrelse (i det følgende benævnt middeloverskridelsen). Ved at foretage en skalering af overskridelserne ved division med middeloverskridelsen for hver station kan effekten af dette illustreres, jvf. Figur 3.5. Heraf ses, at variabiliteten af middeloverskridelsen har størst betydning for moderate gentagelsesperioder, 1 år < T < 5 år. Den resulterende spredning af kurverne i Figur 3.5 kan eventuelt forklares af variabiliteten af højere ordens momenter, spredning, skævhed etc. En stor del af variabiliteten er dog grundet statistiske usikkerheder, som især har stor betydning for store gentagelsesperioder.

Formålet med den statistiske analyse i de følgende afsnit er at redegøre for eventuelle regionale forskelle i ekstremværdikarakteristika. Dette gøres ved at betragte de enkelte elementer i PDS modellen, Poisson parameteren, middeloverskridelsen og højere ordens momenter af overskridelsernes størrelse, som anskueliggjort ovenfor. Dvs. der redegøres for, hvorvidt variabiliteten er statistisk signifikant eller kan forklares alene af de statistiske usikkerheder. Såfremt variabiliteten er signifikant er det næste skridt i analysen at prøve at forklare denne variabilitet ud fra relevante parametre, såsom klimatiske og fysiografiske parametre.

Figur 3.4 Empiriske fordelinger af 10 min. intensitet skaleret mht. Poisson parameteren.

Figur 3.5 Empiriske fordelinger af 10 min. intensitet skaleret mht. Poisson parameteren og middeloverskridelsen.

4. L-moment analyse

4.1 L-moment diagram

Til en indledende vurdering af ekstremværdiserierne med hensyn til regional variabilitet og valg af statistisk fordeling benyttes L-moment analyse. L-momenter er defineret som linear kombinationer af forventningsværdier af rangordnede observater (order statistics) af en stokastisk variabel (Hosking, 1990). Det første L-moment (I_1) er identisk med det første ordinære moment (middelværdi). L-momentet af 2. orden (I_2) er et mål for dispersionen af den stokastiske variabel, analog med det ordinære moment af 2. orden (varians). På tilsvarende vis er L-momenterne af 3. og 4. orden (I_3 og I_4) mål for henholdsvis skævhed og kurtosis. Som for ordinære momenter defineres de standardiserede L-momenter, L-variationskoefficient (L-CV), L-skævhed (L-CS) og Lkurtosis (L-KUR), ved

$$L - CV$$
: $\mathbf{t}_2 = \frac{\mathbf{l}_2}{\mathbf{l}_1}$; $L - CS$: $\mathbf{t}_3 = \frac{\mathbf{l}_3}{\mathbf{l}_2}$; $L - KUR$: $\mathbf{t}_4 = \frac{\mathbf{l}_4}{\mathbf{l}_2}$ (4.1)

Til estimation af L-momenter benyttes linear kombinationer af det rangordnede datasæt. Centrale estimatorer er givet i Landwehr et al. (1979). Sammenholdt med estimater af ordinære standardiserede momenter har de standardiserede L-moment estimater betydelig mindre bias og er desuden mindre følsomme overfor outliers (Vogel & Fennessay, 1993). Egenskaber som er meget vigtige i regionale analyser.

Til en visuel vurdering af regional homogenitet og bestemmelse af en regional fordeling for ekstremværdiserierne benyttes et L-moment diagram. I et L-moment diagram plottes sammenhørende værdier af de standardiserede L-moment estimater for samtlige stationer i den betragtede region og sammenholdes med de teoretiske udtryk for forskellige statistiske fordelinger, se Figur 4.1 som eksempel. Dispersionen af punkterne i L-moment diagrammet er et mål for den regionale variabilitet. Desuden angiver beliggenheden af skyen af punkter, hvilken statistisk fordeling der er mest passende til beskrivelse af data.

I et L-CV/L-skævhed diagram, som vist i Figur 4.1, vil én-parameter fordelinger udgøre et enkelt punkt, mens to-parameter fordelinger er fastlagt ved linier. De her betragtede fordelinger har alle været foreslået i forbindelse med PDS modellering. Den mest simple PDS model er baseret på én-parameter eksponential (EXP) fordelingen, som blev benyttet i de grundlæggende teoretiske fremstillinger af Shane & Lynn (1964) og Todorovic & Zelenhasic (1970). Af to-parameter fordelinger er blevet foreslået gamma (GAM) fordelingen (Zelenhasic, 1970), Weibull (WEI) fordelingen (Miquel, 1984; Ekanayake & Cruise, 1993), log-normal (LN) fordelingen (Rosbjerg et al., 1991) samt den generaliserede Pareto (GP) fordeling (Hosking & Wallis, 1987; Fitzgerald, 1989; Davison & Smith, 1990; Rosbjerg et al., 1992; Madsen et al., 1994). For både GAM, WEI og GP fordelingen udgør EXP fordelingen et specialtilfælde, mens LN fordelingen for alle parameter kombinationer er forskellig fra EXP fordelingen. L-CV og L-skævhed for de forskellige fordelinger kan findes i Hosking (1990) og Stedinger et al. (1993). Polynomie approksimationer for L-moment relationerne, som er nemmere at benytte og som giver tilstrækkelig nøjagtighed ved konstruktion af L-moment diagrammer, er givet i Hosking (1991) og Vogel & Wilson (1996).

Figur 4.1 L-moment diagram for 10 min. intensiteten. Estimater af L-CV og Lskævhed for samtlige 41 stationer og vægtede gennemsnitsværdier sammenholdt med de teoretiske udtryk for generaliseret Pareto (GP), log-normal (LN), gamma (GAM), Weibull (WEI) og eksponential (EXP) fordelingen. Diskordant station er markeret ved skravering.

4.2 Test størrelser

Til en mere formel analyse af den regionale variabilitet og bestemmelse af en regional fordeling har Hosking & Wallis (1993) foreslået tre forskellige tests baseret på L-momenter:

- (1) Indledende screening af data til identifikation af dataserier som er væsentlig forskellige fra gruppen af serier som helhed. Til dette beregnes et diskordans mål for hver dataserie.
- (2) Identifikation af homogen region. Til dette beregnes et heterogenitets mål for variabiliteten af dataserierne.
- (3) Bestemmelse af regional fordeling. Til dette beregnes et goodness-of-fit mål for gruppen af dataserier i forhold til forskellige statistiske fordelinger.

I det følgende gives en kort beskrivelse af de forskellige test størrelser. For en mere fyldestgørende beskrivelse henvises til Hosking & Wallis (1993). Software til brug for analysen kan findes i Hosking (1991).

Diskordans mål

Diskordans målet er baseret på de tre standardiserede L-momenter, L-CV, L-skævhed og L-kurtosis. En station er således fastlagt ved et punkt i et 3-dimensionelt rum, og afstanden til tyngdepunktet for samtlige stationer udgør da et mål for hvor meget stationen afviger fra gruppen af stationer som helhed. Til bestemmelse af afstandsmålet skal der tages hensyn til korrelationen mellem L-moment estimaterne. Benævn med u_i , i= 1,2,..,M en vektor bestående af de tre L-moment estimater ved station nr. i af i alt Mstationer. Diskordans målet er formelt defineret ved

$$D_{i} = \frac{M}{3(M-1)} (u_{i} - \overline{u}) S^{-1} (u_{i} - \overline{u})^{\mathrm{T}}$$
(4.2)

hvor \overline{u} er middelværdien af u_i , og S er den estimerede kovariansmatrix.

Store værdier af D_i angiver stationer, som er mest forskellig fra gruppen af stationer som helhed. Et signifikanstest for den maksimale værdi af D_i kan formuleres under forudsætning af, at u_i er uafhængige og normal fordelte. En approksimativ kritisk værdi af Max $\{D_i\}$ på signifikansniveau **a** er givet ved

$$D_c = \frac{(M-1)F}{M-4+3F}$$
(4.3)

hvor *F* er (1-a/M)-fraktilen i en *F*-fordeling med 3 og *M*-4 frihedsgrader. Benyttes a = 0.05 har vi da i dette tilfælde (M = 41): $D_c = 4.6$. Hosking & Wallis (1993) anbefaler generelt at benytte $D_i > 3$ som kriterium for, at en station er diskordant.

Heterogenitets mål

Som nævnt ovenfor giver dispersionen af L-moment estimaterne i et L-moment diagram et visuelt mål for den regionale variabilitet af dataserierne. I en homogen region vil alle stationer have samme L-momenter, men grundet statistiske usikkerheder vil der observeres en vis variabilitet af estimaterne. Spørgsmålet er da, hvorvidt den observerede variabilitet kan forklares alene af statistiske usikkerheder, eller den skyldes at dataserierne er signifikant forskellige og derfor udgør en heterogen region. Forskellen mellem den observerede variabilitet og den variabilitet man vil forvente i en tilsvarende homogen region er et mål for heterogeniteten. For at teste signifikansen af denne forskel skal den sammenholdes med spredningen af den forventede variabilitet. Til bestemmelse af den forventede variabilitet og tilhørende spredning i en homogen region benyttes Monte Carlo simulering. I stedet for at basere testet på variabiliteten i L-moment diagrammet fokuseres alene på variabiliteten af L-CV, da den generelt har en meget større effekt end variabiliteten af de højere ordens momenter. Spredningen af L-CV estimaterne beregnes som

$$V = \sqrt{\frac{\sum_{i=1}^{M} n_i (\hat{t}_{2i} - \bar{t}_2)^2}{\sum_{i=1}^{M} n_i}} , \quad \bar{t}_2 = \frac{\sum_{i=1}^{M} n_i \hat{t}_{2i}}{\sum_{i=1}^{M} n_i}$$
(4.4)

hvor de enkelte stationers estimater er vægtet med antallet af observationer n_i for derved at tage hensyn til den statistiske usikkerhed tilknyttet estimatet (generelt er den statistiske usikkerhed omvendt proportional med antallet af observationer).

Den forventede variabilitet i en homogen region bestemmes ved at simulere et sort antal regioner fra en fordeling med statistiske karakteristika lig med middel karakteristika fra regionen og ved generering af det samme antal data ved hver station som i de observerede dataserier. Til simuleringen benyttes en 4-parameter kappa fordeling. For hver simuleret region beregnes spredningen af L-CV estimaterne, jvf. (4.4). Heterogenitets målet er givet ved

$$H = \frac{V - \mathbf{m}_{V}}{\mathbf{s}_{V}} \tag{4.5}$$

hvor \mathbf{m}_V og \mathbf{s}_V er henholdsvis middelværdien og spredningen af de simulerede V-værdier. Regionen betragtes som "acceptabel homogen" såfremt H < 1, "sandsynligvis heterogen" for 1 < H < 2, og "afgjort heterogen" for H > 2.

En kappa fordeling benyttes til simuleringen for ikke at sammenblande analysen af den regionale variabilitet med den efterfølgende fordelingsanalyse. Såfremt en af de alternative PDS fordelinger blev benyttet til simuleringen, kunne en indikation af heterogenitet skyldes en afvigelse fra den benyttede fordeling og ikke en "sand" regional variabilitet. Det skal også bemærkes, at heterogenitets mål der inkluderer højere ordens L-momenter kan defineres på tilsvarende vis. Disse test størrelser har dog generelt mindre styrke end test størrelsen baseret på L-CV.

Goodness-of-fit mål

Goodness-of-fit målet i Hosking & Wallis (1993) er specielt formuleret til analyse af alternative 3-parameter fordelinger. I PDS modellering, hvor de alternative fordelinger inkluderer EXP fordelingen og forskellige 2-parameter fordelinger, bør testet omformuleres.

Betragt først en given 2-parameter fordeling. Til estimation af denne fordelings formparameter fra regionale data benyttes det regionale L-CV estimat. Som et mål for fordelingens fit til data kan man derfor benytte afstanden mellem det regionale estimat af L-skævhed og den teoretiske L-skævhed for fordelingen, der er entydigt fastlagt ved den estimerede formparameter. For at teste signifikansen af denne forskel skal den sammenholdes med den statistiske usikkerhed på det regionale estimat af L-skævhed. Goodness-of-fit målet er da givet ved

$$Z = \frac{\overline{t}_3 - t_3^{\text{DIST}}}{S_3}$$
(4.6)

hvor \bar{t}_3 er det vægtede gennemsnit af L-skævhed, t_3^{DIST} er L-skævhed for den pågældende 2-parameter fordeling (DIST betegner i dette tilfælde GAM, WEI, LN eller GP), og s_3 er spredningen på det regionale estimat af L-skævhed. Til bestemmelse af s_3 benyttes Monte Carlo simulering i en homogen region baseret på kappa fordelingen.

Goodness-of-fit målet for EXP fordelingen kan formuleres på tilsvarende vis. I dette tilfælde baseres målet dog på afstanden mellem det regionale L-CV estimat og den teoretiske L-CV i EXP fordelingen, dvs.

$$Z = \frac{\overline{t}_2 - t_2^{\text{EXP}}}{\overline{s}_2}$$
(4.7)

hvor s_2 er spredningen af det regionale L-CV estimat bestemt ved Monte Carlo simulering.

Et signifikanstest for goodness-of-fit målet kan formuleres under antagelse af, at de standardiserede L-moment estimater er uafhængige, homogene og normal fordelte. I dette tilfælde er Z approksimativt normal fordelt, og den kritiske værdi for |Z| på signifikansniveau **a** er da givet ved (1-**a**/2)-fraktilen i den standardiserede normal fordeling. Dvs. ved test på 5% signifikansniveau må den pågældende fordeling afvises såfremt |Z| > 1.96.

Test af 3-parameter fordelinger i Hosking & Wallis (1993) er baseret på L-kurtosis, og i dette tilfælde benyttes en bias korrektion til det regionale L-kurtosis estimat. Bias korrektion er ikke benyttet her, idet det regionale L-skævhed og L-CV estimat ikke har nævneværdig bias.

En implicit forudsætning for goodness-of-fit testet er, at dataserierne stammer fra en homogen region. I en stærk heterogen region kan der optræde to eller flere populationer med signifikant forskellige fordelingskarakteristika, og et test af samtlige stationers middelkarakteristika kan derfor ikke benyttes i dette tilfælde. I mindre heterogene regioner kan det generelt forsvares at benytte ovenstående goodness-of-fit mål. Under alle omstændigheder bør testet ikke stå alene men suppleres med informationer fra Lmoment diagrammet omkring de enkelte punkters beliggenhed i forhold til de teoretiske udtryk for de betragtede fordelinger.

4.3 Resultater

For samtlige analyserede variable er L-moment diagrammer bestemt, og som eksempel er L-moment diagrammet for 10 min. intensiteten vist i Figur 4.1.

I Tabel 4.1 er angivet de stationer for hvilke diskordans målet $D_i > 3$. Af tabellen fremgår afvigelsen af stationens L-moment estimater fra gruppens tyngdepunkt. For de diskordante stationer er der generelt en større afvigelse for L-kurtosis end L-skævhed, som til gengæld har større afvigelse end L-CV. Dette hænger sammen med, at der er større variabilitet grundet statistiske usikkerheder på højere ordens momenter. Det bemærkes desuden, at afvigelser i hver sin retning for de forskellige L-momenter generelt er mere kritisk end afvigelser i samme retning. Dette er relateret til, at der er forholdsvis stor positiv korrelation mellem L-moment estimaterne (se Figur 4.1), og afvigelser i hver sin retning vil derfor give et større afstandsmål til gruppens tyngdepunkt.

51	Signifikalishiveau (wax $\{D_i\} > 4.0$).								
Variabel	Station	L-CV afv.	L-CS afv.	L-KUR afv.	$\mathbf{D}_{\mathbf{i}}$				
	nr.	[%]	[%]	[%]					
i10m	22361	-19	0	29	5.1				
i30m	30311	-16	-8	5	3.3				
i60m	20211	26	49	62	3.2				
	28186	-7	-7	-39	3.6				
i3h	31231	-7	-12	-71	3.9				
i6h	30221	-8	22	67	3.2				
	31231	-12	-10	-31	3.1				
i24h	22361	-16	-45	-35	3.5				
	31401	14	40	115	3.0				
i48h	23127	-24	-58	-57	3.8				
	28184	-6	-3	-46	3.4				
dph	25171	-14	-44	-64	3.2				
	31231	9	25	79	3.0				
dpd	20461	21	47	102	4.4				
bv2	22421	-11	-3	-10	3.2				
	30191	30	59	86	3.4				
	31231	0	-20	-85	4.2				
ov1	23127	-6	-35	-56	3.4				
ov2	28184	-30	-64	-40	4.2				
	30312	-13	14	27	5.8				
	31231	0	-12	-83	3.4				

Tabel 4.1 Stationer med diskordans mål $D_i > 3$ med angivelse af stationens afvigelse fra gennemsnittet af L-CV, L-skævhed og L-kurtosis. Skravering angiver stationer med signifikante outliers på 5% signifikansniveau (Max{ D_i } > 4.6).

Betragtes de analyserede variable under et er der ingen stationer, der optræder diskordant for samtlige variable, og der er derfor ikke umiddelbart anledning til at tro, at enkelte stationers data er behæftet med store fejl. En enkelt station, station 31231, optræder dog som diskordant for 5 af de i alt 14 analyserede variable. Tre stationer, 22361, 23127 og 28184, optræder som diskordant for 2 af de analyserede variable. I to tilfælde er der signifikante outliers på 5% signifikansniveau. Dette skal dog sammenholdes med, at 2 ud af i alt 574 (41 stationer gange 14 variable) udgør under 0.5 %, hvilket er betydelig mindre end signifikansniveauet på 5%. Sammenlagt må det i denne indledende analyse konkluderes, at ingen stationer udviser ekstremværdikarakteristika, der er signifikant forskellig fra de 41 stationer som helhed.

Tabel 4.2	Heterogenitets mål H og goodness-of-fit mål Z for henholdsvis gamma
	(GAM), Weibull (WEI), log-normal (LN), generaliseret Pareto (GP) og
	eksponential (EXP) fordelingen. Skravering for $1 < H < 2$ angiver region, der
	er "sandsynligvis heterogen". Skravering for $ Z < 1.96$ angiver, at den
	pågældende fordeling ikke kan afvises på 5% signifikansniveau.

Variabel	Н	Z _{GAM}	Z_{WEI}	Z_{LN}	Z_{GP}	Z_{EXP}
i10m	0.5	-2.8	-1.7	7.6	-0.7	-2.7
i30m	-1.2	-1.1	0.5	9.2	2.6	-6.0
i60m	0.2	-1.2	0.2	8.7	1.9	-4.7
i3h	-0.8	-2.8	-1.6	6.4	-0.5	-3.2
i6h	-1.7	-3.1	-1.6	6.4	0.6	-6.2
i12h	-0.9	-2.5	-1.2	6.2	0.4	-4.5
i24h	-1.2	-2.5	-1.0	6.6	0.9	-5.6
i48h	1.2	-2.1	-0.7	7.8	1.1	-4.9
i48h (÷23127)	0.4	-2.3	-0.8	7.7	1.1	-5.3
dph	-1.8	-3.8	-2.2	5.4	0.0	-6.4
dpd	0.2	-2.0	-1.9	7.7	-0.6	-1.4
bv1	-0.2	-3.0	-1.3	6.5	1.4	-7.9
bv2	1.0	-3.0	-1.4	6.0	1.2	-7.4
bv2 (÷30191)	0.2	-2.9	-1.3	6.1	1.2	-7.1
ov1	-3.0	-3.2	-1.5	5.9	1.2	-7.8
ov2	1.4	-2.9	-1.5	5.9	0.5	-5.7
ov2 (÷28184)	0.7	-3.1	-1.6	5.8	0.5	-6.2

Heterogenitets målet H for de forskellige variable er vist i Tabel 4.2. For 11 af de analyserede variable er H mindre end 1, og i disse tilfælde kan de 41 stationer betragtes at udgøre en homogen region med hensyn til 2. og højere ordens momenter. Dvs., at de observerede variabiliteter i L-moment diagrammerne alene kan forklares af de statistiske usikkerheder. For 3 af de analyserede variable, 48 timers intensiteten samt bassin- og overløbsvolumen for afløbstal $a = 1.0 \mu m/s$, er H større end 1 og indikerer derved, at regionen i disse tilfælde sandsynligvis er heterogen. Som det fremgår af Tabel 4.1 har de tre variable diskordante stationer. Sensitiviteten af heterogenitets målet er derfor undersøgt ved at udelade den station af de i Tabel 4.1 mærkede diskordante stationer, som har den største afvigelse fra det gennemsnitlige L-CV estimat. For de tre variable opnås i dette tilfælde H-værdier under 1, og indikerer altså at regionen kan antages

homogen. Hvorvidt de udeladte stationer skal betragtes som outliers og derfor behandles særskilt vil ikke blive forfulgt nærmere i denne forbindelse. En mere fyldestgørende analyse af den regionale variabilitet vil fremgå af de efterfølgende afsnit. Her skal blot bemærkes, at heterogenitets målet kan være følsomt overfor outliers, og det skal under alle omstændigheder ikke tages som et strikt signifikanstest.

Resultaterne af goodness-of-fit testet fremgår af Tabel 4.2. For samtlige 14 variable må LN fordelingen klart afvises, EXP fordelingen afvises for de 13 variable, og GAM fordelingen afvises for de 12 variable. WEI og GP fordelingen må hver især afvises for blot en enkelt af de analyserede variable og giver derfor samlet set det bedste fit til dataserierne. Sammenholdes med strukturen af punkterne i L-moment diagrammerne (se Figur 4.1 som eksempel) ses, at GP fordelingen er klart at foretrække fremfor WEI fordelingen. Det må derfor konkluderes, at GP fordelingen for samtlige analyserede variable er et fornuftigt valg til beskrivelse af overskridelserne i PDS modellen.

For samtlige variable er de vægtede estimater af L-CV og L-skævhed vist i Figur 4.2. Generelt gælder, at jo mere mod NE punkterne ligger i L-moment diagrammet jo mere højre-skæv er den regionale fordeling og giver derved anledning til mere ekstreme hændelser. For de betragtede variable har bassin- og overløbsvolumen samt den totale regndybde de mest højre-skæve fordelinger. I den anden ende af skalaen markerer døgnnedbøren sig som den mindst højre-skæve fordeling. Faktisk kan EXP fordelingen accepteres i dette tilfælde, jvf. Tabel 4.2. For intensiteten er der ikke umiddelbart en sammenhæng mellem varigheden og beliggenheden i L-moment diagrammet.

Figur 4.2 Regionale estimater af L-CV og L-skævhed (vægtet gennemsnit) sammenholdt med de teoretiske udtryk for generaliseret Pareto (GP), log-normal (LN), gamma (GAM), Weibull (WEI) og eksponential (EXP) fordelingen.
For samtlige test størrelser beskrevet i dette afsnit er det implicit antaget, at regionen består af uafhængige stationer. Afhængighed i data bevirker, at test størrelserne generelt har mindre styrke, hvilket især har betydning for vurderingen af den regionale homogenitet. Betydningen af afhængigheden mellem stationerne grundet samtidige nedbørshændelser vil blive analyseret i det følgende afsnit.

5. Regional middelværdimodel

5.1 GLS model

Til kvantificering af den regionale variabilitet og estimation af den regionale middelværdi for de indgående parametre i PDS modellen benyttes en model baseret på generaliseret mindste kvadraters (generalized least squares, GLS) regression. Metoden adskiller sig fra almindelig mindste kvadraters metode ved eksplicit at tage hensyn til den statistiske usikkerhed og afhængigheden mellem data. Metoden giver udover et estimat af middelværdien et estimat af den tilhørende usikkerhed. Denne usikkerhed kan opsplittes i to bidrag, henholdsvis statistisk usikkerhed korrigeret for afhængighed og residual modelusikkerhed, som giver et mål for den regionale heterogenitet.

I dette afsnit beskrives GLS modellen, der benyttes ved en regional middelværdi betragtning af PDS parametrene. De regionale PDS estimater benyttes derefter til estimation af regionale *T*-års hændelser og tilhørende estimationsusikkerhed. I det efterfølgende afsnit beskrives GLS modellen til benyttelse i regressionsanalyse. En beskrivelse af GLS modellen kan findes i Madsen & Rosbjerg (1997b).

Benævn med \hat{q}_i et estimat af en PDS parameter ved station nr. *i*. Estimatet afviger fra den "sande" parameter q_i grundet statistiske usikkerheder (også benævnt sampling usikkerheder)

$$\boldsymbol{q}_i = \boldsymbol{q}_i + \boldsymbol{e}_i \quad , i = 1, 2, \dots, M \tag{5.1}$$

hvor e_i er en tilfældig sampling fejl med middelværdi 0 og kovariansmatrix givet ved

$$\operatorname{Cov}\{\boldsymbol{e}_{i},\boldsymbol{e}_{j}\} = \begin{cases} \boldsymbol{s}_{ei}^{2} & , i = j \\ \boldsymbol{s}_{ei}\boldsymbol{s}_{ej}\boldsymbol{r}_{eij} & , i \neq j \end{cases}$$
(5.2)

I (5.2) er s_{ei}^2 sampling variansen, og r_{eij} er korrelationskoefficienten mellem de estimerede parametre. Den sande parameter q_i antages at kunne beskrives som

$$q_i = b_0 + d_i$$
, $i = 1, 2, ..., M$ (5.3)

hvor \boldsymbol{b}_0 er den regionale middelværdi, og \boldsymbol{d}_i er en residual fejl (eller modelfejl), der udtrykker afvigelsen mellem stationens parameter og den regionale middelværdi. Residualfejlen antages at have middelværdi 0 og kovariansmatrix givet ved

$$\operatorname{Cov}\{\boldsymbol{d}_{i},\boldsymbol{d}_{j}\} = \begin{cases} \boldsymbol{s}_{d}^{2} & , i = j \\ 0 & , i \neq j \end{cases}$$
(5.4)

hvor s_d^2 er residualvariansen, der er et mål for den regionale variabilitet.

Kovariansmatricen for den resulterende fejl $\mathbf{e}_i + \mathbf{d}_i$ findes af (5.2) og (5.4)

$$\Lambda_{ij} = \operatorname{Cov}\{\boldsymbol{e}_i + \boldsymbol{d}_i, \boldsymbol{e}_j + \boldsymbol{d}_j\} = \begin{cases} \boldsymbol{s}_{ei}^2 + \boldsymbol{s}_{d}^2 &, i = j \\ \boldsymbol{s}_{ei} \boldsymbol{s}_{ej} \boldsymbol{r}_{eij} &, i \neq j \end{cases}$$
(5.5)

Benævn med Λ_{ij}^{-1} de enkelte elementer i den inverse matrix Λ^{-1} . GLS estimater af den regionale middelværdi \mathbf{b}_0 og residualvariansen \mathbf{s}_d^2 bestemmes af følgende ligningssystem

$$\hat{\boldsymbol{b}}_{0} = \frac{\sum_{j=1}^{M} \hat{\boldsymbol{q}}_{j} \sum_{i=1}^{M} \Lambda_{ij}^{-1}}{\sum_{i=1}^{M} \sum_{j=1}^{M} \Lambda_{ij}^{-1}} , \qquad \sum_{i=1}^{M} (\hat{\boldsymbol{q}}_{i} - \hat{\boldsymbol{b}}_{0})^{2} = \sum_{i=1}^{M} \Lambda_{ij}^{-1} - \frac{M}{\sum_{i=1}^{M} \sum_{j=1}^{M} \Lambda_{ij}^{-1}}$$
(5.6)

som generelt må løses iterativt. I visse tilfælde vil man ikke finde en positiv værdi af s_d^2 som opfylder (5.6). I sådanne situationer er den observerede variabilitet alene grundet sampling usikkerheder, og s_d^2 skal da sættes lig 0, dvs. regionen kan antages at være homogen. Prediktionsusikkerheden på PDS parameteren et arbitrært sted i regionen inkluderer usikkerheden på både estimatet af den regionale middelværdi og residualusikkerheden

$$\hat{\boldsymbol{S}}_{\boldsymbol{q}}^{2} = \hat{\boldsymbol{S}}_{\boldsymbol{b}_{0}}^{2} + \hat{\boldsymbol{S}}_{\boldsymbol{d}}^{2} = \left[\sum_{i=1}^{M} \sum_{j=1}^{M} \Lambda_{ij}^{-1}\right]^{-1} + \hat{\boldsymbol{S}}_{\boldsymbol{d}}^{2}$$
(5.7)

I tilfælde af ens sampling varians $s_{ei}^2 = s_e^2$ og korrelation $r_{eij} = r_e$ kan ligningssystemet i (5.6) løses eksplicit (Madsen et al., 1994)

$$\hat{\boldsymbol{b}}_{0} = \frac{1}{M} \sum_{i=1}^{M} \hat{\boldsymbol{q}}_{i} \quad , \quad \hat{\boldsymbol{s}}_{\boldsymbol{d}}^{2} = \operatorname{Max} \left\{ 0 \; ; \frac{1}{M-1} \sum_{i=1}^{M} (\hat{\boldsymbol{q}}_{i} - \hat{\boldsymbol{b}}_{0})^{2} - (1 - \boldsymbol{r}_{e}) \boldsymbol{s}_{e}^{2} \right\}$$
(5.8)

hvor prediktionsvariansen da er givet ved

М

$$\hat{\boldsymbol{s}}_{\boldsymbol{q}}^{2} = \frac{M+1}{M} \hat{\boldsymbol{s}}_{\boldsymbol{d}}^{2} + \frac{1}{M} [1 + \boldsymbol{r}_{\boldsymbol{e}}(M-1)] \boldsymbol{s}_{\boldsymbol{e}}^{2}$$
(5.9)

Effekten på usikkerheden på det regionale estimat grundet korrelation fremgår af det andet led i (5.9). Jo større korrelation des mindre er informationsværdien i de regionale data og jo større bliver sampling usikkerheden.

I (5.8) er GLS estimatet af den regionale middelværdi lig gennemsnittet over alle stationer. Generelt er det regionale GLS estimat, jvf. (5.6), dog forskellig fra det simple gennemsnit, idet de enkelte stationers estimater vægtes i forhold til kovariansmatricen Λ .

Løsning af ligningssystemet (5.6) kræver kendskab til sampling variansen på PDS parameter estimaterne og korrelationen mellem estimaterne. Generelt kan sampling variansen bestemmes af approksimative udtryk, der afhænger af populationsparametrene (se f.eks. Madsen & Rosbjerg, 1997a). Ved praktisk brug af de approksimative formler indsættes de estimerede parametre. I GLS modellen bør den benyttede sampling varians imidlertid være uafhængig, eller stort set uafhængig, af parameterestimatet (Stedinger & Tasker, 1985). Estimater der opfylder dette krav beskrives i det følgende.

For den estimerede Poisson parameter er sampling variansen teoretisk givet som $\mathbf{s}_{ei}^2 = \mathbf{l}_i / t_i$, hvor t_i er observationsperiodens længde. Et estimat af sampling variansen i GLS modellen kan da bestemmes som

$$\hat{\boldsymbol{s}}_{ei}^2 = \frac{c}{t_i}$$
 , $c = \frac{1}{M} \sum_{i=1}^M \hat{\boldsymbol{l}}_i$ (5.10)

For middelværdien af overskridelserne samt de højere ordens momenter L-CV, Lskævhed etc. bestemmes sampling variansen som

$$\hat{\boldsymbol{S}}_{ei}^2 = \frac{c}{n_i} \tag{5.11}$$

hvor *c* er en konstant, der afhænger af det betragtede moment. For den estimerede middeloverskridelse er sampling variansen teoretisk givet ved $\mathbf{s}_{ei}^2 = \mathbf{s}_i^2 / n_i$, hvor \mathbf{s}_i^2 er populationsvariansen. Konstanten *c* kan da bestemmes som $c = \sum \hat{\mathbf{s}}_i^2 / M$, hvor $\hat{\mathbf{s}}_i^2$ er den estimerede varians af overskridelserne. For L-CV og højere ordens L-momenter bestemmes *c* ved Monte Carlo simulering. Et stort antal dataserier genereres fra en kappa fordeling med statistiske karakteristika lig middel karakteristiska for regionen (middel L-CV, L-skævhed, L-kurtosis og antal observationer). Betegnes den resulterende varians af L-moment estimaterne V^2 , kan konstanten *c* bestemmes som $c = \overline{n}V^2$, hvor \overline{n} er middel antal observationer.

Til beskrivelse af den indbyrdes korrelation mellem parameterestimaterne betragtes to typer af korrelationer, henholdsvis korrelationen mellem overskridelsernes størrelse grundet samtidige hændelser og korrelationen mellem antal årlige overskridelser. Korrelationskoefficienten mellem de estimerede middeloverskridelser, \mathbf{r}_{mj} , er lig korrelationskoefficienten mellem overskridelsernes størrelse $\mathbf{r}_{mj} = \mathbf{r}_{ij}$. Korrelationskoefficienten mellem estimerede højere ordens momenter afhænger af momentordenen. For L-CV er korrelationen givet ved $\mathbf{r}_{tij} = \mathbf{r}_{ij}^2$, for L-skævhed $\mathbf{r}_{tij} = \mathbf{r}_{ij}^3$ etc. (Stedinger, 1983; Madsen & Rosbjerg, 1997b). Dvs. effekten af den indbyrdes korrelation mellem stationerne grundet samtidige hændelser aftager for estimation af højere ordens momenter. Korrelationskoefficienten mellem antal årlige overskridelser (Mikkelsen et al., 1996).

Generelt er der meget store usikkerheder tilknyttet estimation af den indbyrdes korrelation mellem stationerne, og en direkte benyttelse af de estimerede korrelationskoefficienter i GLS modellen kan dels give numeriske problemer med hensyn til inversion af kovariansmatricen og dels medføre urealistiske regionale estimater. For at få en bedre og mere udglattet beskrivelse af korrelationsstrukturen relateres korrelationskoefficienten derfor til afstanden mellem stationerne.

5.2 Estimation af den spatiale korrelationsstruktur

Estimation af den indbyrdes korrelation mellem to PDS tidsserier vanskeliggøres af, at overskridelser ikke observeres til samme tidspunkter ved de to stationer. En ekstrem hændelse, der observeres ved en af stationerne, kan f.eks. have en meget begrænset udbredelse og derfor ikke give nedbør ved den anden station; eller såfremt den giver nedbør ved den anden station kan der her være tale om en hændelse, som ikke overstiger afskæringsniveauet og derfor ikke registreres som en ekstrem hændelse. Desuden kan vandrende frontsystemer give anledning til meteorologisk set sammenhørende ekstreme hændelser som ikke overlapper tidsmæssigt. Den her benyttede procedure til estimation af korrelation mellem ekstremhændelser er beskrevet i Mikkelsen et al. (1996).

Lad der være givet to PDS tidsserier, hver karakteriseret ved start- og sluttidspunkt samt størrelse af overskridelse for hver hændelse. To hændelser kan regnes for sammenhørende, såfremt de overlapper tidsmæssigt. Hvis flere hændelser overlapper betegnes de to hændelser, der har det største tidsmæssige overlap, som sammenhørende. Herved defineres en serie af sammenhørende overskridelser, hvoraf man kan beregne en betinget korrelationskoefficient (betinget af at der optræder ekstreme hændelser samtidigt ved de to stationer). For at tage hensyn til at der er hændelser som ikke overlapper tidsmæssigt, nødvendigt at foretage en korrektion, hvorved den er det ubetingede korrelationskoefficient fremkommer (se Mikkelsen et al. (1996) for detaljer). For at tage hensyn til vandrende frontsystemer i definitionen af sammenhørende hændelser kræves et meteorologisk detailkendskab for hver enkelt hændelse. Alternativt kan man implicit indbygge effekten af vandrende fronter ved at udvide varigheden af de enkelte hændelser. Dette har dog ingen nævneværdig effekt på korrelationsestimaterne (Mikkelsen et al., 1996). I beregningen tages der hensyn til manglende måleperioder, idet der ses bort fra de overskridelser der forekommer ved den ene station under måleudfald ved den anden station.

Den indbyrdes korrelation mellem de estimerede Poisson parametre bestemmes som korrelationen mellem antal årlige overskridelser for de sammenhørende observationsår ved de to stationer. Måleudfald tages også her i regning, idet der ses bort fra et observationsår, såfremt der er mere end sammenlagt 60 dage med måleudfald ved en af stationerne.

Ovenstående beregningsprocedurer er benyttet til estimation af korrelationsstrukturen for de 14 betragtede nedbørsvariable. Eksempler på korrelationens afhængighed af afstanden fremgår af Figur 5.1 og Figur 5.2, hvor resultater for 10 min. og 24 timers intensiteten er vist. På figurerne er angivet de enkelte estimater af den indbyrdes korrelationskoefficient, en glidende gennemsnitskurve (beregnet som gennemsnit af 10 datapunkter), samt den funktion der er tilpasset til data.

Figur 5.1 Spatial korrelationsstruktur for 10 min. intensitet. Øverst: korrelation mellem overskridelsernes størrelse. Nederst: korrelation mellem antal årlige overskridelser.

Figur 5.2 Spatial korrelationsstruktur for 24 timers intensitet. Øverst: korrelation mellem overskridelsernes størrelse. Nederst: korrelation mellem antal årlige overskridelser.

Betragtes korrelationen mellem overskridelsernes størrelse ses en tydelig afstandsafhængighed, med mindre korrelation mellem stationer der har en større indbyrdes afstand. Der ses en betydelig variabilitet på de enkelte estimater, hvilket bekræfter nødvendigheden af at tilnærme en funktion til beskrivelse af korrelationsstrukturen. En eksponentiel korrelationsfunktion benyttes i dette tilfælde

$$\boldsymbol{r}_{ij} = \boldsymbol{j}^{\left[\frac{d_{ij}}{\boldsymbol{w}d_{ij}+1}\right]} = \exp\left(\left[\frac{d_{ij}}{\boldsymbol{w}d_{ij}+1}\right]\ln\boldsymbol{j}\right)$$
(5.12)

hvor d_{ij} er afstanden mellem stationerne. De to parametre j og w bestemmes ved visuel tilpasning af (5.12) til den glidende gennemsnitskurve. Bemærk at den valgte kurvetype går gennem r = 1 for d = 0 og har vandret asymptote r = 0 for $d \rightarrow \infty$.

På Figur 5.1 og Figur 5.2 ses også en tydelig sammenhæng mellem korrelationen og varigheden af den betragtede intensitet, med større spatial korrelation for voksende varighed. Dette kan forklares af, at ekstreme intensiteter for store varigheder primært er relateret til vandrende frontsystemer med stor udbredelse (og deraf stor spatial korrelation), mens ekstreme intensiteter for små varigheder primært er relateret til konvektive regnceller med begrænset spatial udbredelse. Den gennemsnitlige korrelation for de analyserede variable er vist i Figur 5.3. Heraf ses tydeligt sammenhængen mellem korrelationens størrelse og varigheden. Bassin- og overløbsvolumen for små afløbstal (bv1 og ov1) har også en stor korrelation, hvilket hænger sammen med, at det primært er de nedbørsrige regn, der i dette tilfælde giver anledning til ekstreme voluminer. For bassin- og overløbsvolumen for store afløbstal (bv2 og ov2) er der en mindre spatial korrelation, idet det her er de mere højintense regn, der giver ekstreme voluminer. Ekstreme regndybder og døgnnedbør er også karakteriseret ved stor spatial korrelation.

I modsætning til korrelationen mellem overskridelsernes størrelse, er der ingen umiddelbar spatial struktur i korrelationen mellem antal årlige overskridelser (se Figur 5.1 og Figur 5.2). De enkelte estimater ses at have en betydelig variabilitet med både store positive og negative korrelationer over stort set hele den betragtede spatiale skala. I dette tilfælde er en konstant funktion tilpasset med niveau lig den gennemsnitlige korrelationskoefficient. For de analyserede variable er den gennemsnitlige korrelation vist i Figur 5.4. Der ses at være en generel større korrelation for intensiteter med større varigheder, men effekten er mindre udpræget end for korrelationen grundet sammenhørende hændelser. Forskellen mellem bassin- og overløbsvolumen for små og store afløbstal træder også frem i dette tilfælde.

Figur 5.3 Gennemsnitlig korrelationskoefficient for korrelation mellem overskridelsernes størrelse.

Figur 5.4 Gennemsnitlig korrelationskoefficient for korrelation mellem antal årlige overskridelser.

5.3 Estimation af regionale parametre

Baseret på de estimerede sampling varianser, jvf. (5.10) og (5.11) og den estimerede spatiale korrelationsstruktur er det muligt at løse ligningssystemet (5.6) med hensyn til den regionale middelværdi og residualvariansen. Den tilhørende prediktionsvarians bestemmes af (5.7). Nedenfor angives resultaterne for Poisson parameteren, middeloverskridelsen samt højere ordens L-momenter for de 14 analyserede nedbørs-variable.

Udover GLS estimaterne beregnes for hver station den såkaldte Cook's D størrelse, som er et mål for hvor meget model fittet ændres ved at ekskludere den pågældende station i regressionsmodellen. For den regionale middelværdimodel indikerer store værdier af Cooks's D stationer, som afviger mest fra gruppen af stationer som helhed og derfor muligvis bør betragtes som outliers (tilsvarende diskordans målet for L-momenterne beskrevet i Afsnit 4). Beregning af Cook's D for GLS modellen er beskrevet i Tasker & Stedinger (1989).

Poisson parameter

Resultaterne for Poisson parameteren fremgår af Tabel 5.1. I tabellen er angivet estimaterne af den regionale middelværdi, residualvariansen og prediktionsvariansen. Til sammenligning er desuden anført det simple regionale gennemsnit.

Variabel	Simpel middel	GLS middel	Residual varians	Pred. varians
i10m	3.22	3.22	0.195	0.236
i30m	3.11	3.10	0.278	0.320
i60m	3.13	3.10	0.256	0.303
i3h	3.02	3.01	0.211	0.255
i6h	2.83	2.81	0.166	0.220
i12h	2.53	2.52	0.215	0.258
i24h	2.65	2.63	0.460	0.517
i48h	3.04	3.02	0.664	0.729
dph	3.09	3.10	0.208	0.267
dpd	2.95	2.92	0.396	0.446
bv1	2.82	2.81	0.390	0.440
bv2	2.85	2.83	0.177	0.208
ov1	2.95	2.95	0.208	0.265
ov2	2.89	2.86	0.247	0.281

Tabel 5.1 GLS regional middelværdimodel for Poisson parameteren. Middelværdi er angivet i [år⁻¹] og varians i [år⁻¹]².

For samtlige variable er residualvariansen forskellig fra 0 og indikerer derved, at Poisson parameteren varierer signifikant. Residualvariansen udgør mellem 75% og 90% af den

totale prediktionsvarians. Den regionale variabilitet er mest udpræget for intensiteter med stor varighed (i24h, i48h og bv1) og døgnnedbøren (dpd). Det ses, at GLS middelværdien kun afviger marginalt fra det simple gennemsnit. Dette skyldes dels at korrelationen antages konstant i regionen, jvf. Figur 5.1 og Figur 5.2 (nederst) og dels at variansen på de enkelte estimater er stort set ens, da der ikke er særlig stor variation på observationsperiodens længde. Den approksimative GLS løsning i (5.8)-(5.9) giver derfor i dette tilfælde acceptable estimater.

Middeloverskridelse

Resultaterne for middeloverskridelsen fremgår af Tabel 5.2. Den estimerede residualvarians er lig 0 for 30 min. og 60. min. intensiteten samt for bassin- og overløbsvolumen for stort afløbstal. For 10 min. intensiteten afviger en enkelt station (23261) markant fra gruppen af stationer som helhed (stor værdi af Cook's D). Ekskluderes denne station fås i dette tilfælde en residualvarians på 0. Det kan derfor generelt konkluderes, at for intensiteter med små varigheder og bassin- og overløbsvolumen for store afløbstal er der ingen regional forskel på middeloverskridelsen. For intensiteter med store varigheder, bassin- og overløbsvolumen for små afløbstal, regndybde og døgnnedbør er der derimod en signifikant regional variabilitet. For disse variable udgør residualvariansen mellem 50% og 75% af den samlede prediktionsvarians. Den relative prediktionsvarians (i forhold til middelværdien) er mindre for intensiteter med små varigheder, hvilket dels skyldes en mindre relativ residualvarians og dels en mindre spatial korrelation (og derved mindre sampling varians).

Tabel 5.2	GLS regional middelværdimodel for middeloverskridelsen. For
	intensiteterne er middelværdien angivet i [µm/s] og variansen i
	$[\mu m/s]^2$. For volumen variable er middelværdien og variansen
	angivet i henholdsvis [mm] og [mm] ² .

Variabel	Simpel middel	GLS middel	Residual varians	Pred. varians
i10m	3.34	3.39	6.61 x 10 ⁻²	8.00 x 10 ⁻²
i10m(÷23261)	3.30	3.33	0	1.20 x 10 ⁻²
i30m	1.60	1.61	0	3.04 x 10 ⁻³
i60m	0.937	0.948	0	1.25 x 10 ⁻³
i3h	0.449	0.436	1.13 x 10 ⁻³	1.78 x 10 ⁻³
i6h	0.277	0.260	3.37 x 10 ⁻⁴	6.82 x 10 ⁻⁴
i12h	0.184	0.166	3.31 x 10 ⁻⁴	5.31 x 10 ⁻⁴
i24h	0.114	9.42 x 10 ⁻²	9.64 x 10 ⁻⁵	1.75 x 10 ⁻⁴
i48h	6.84 x 10 ⁻²	5.71 x 10 ⁻²	3.21 x 10 ⁻⁵	5.80 x 10 ⁻⁵
dph	8.42	7.21	0.824	1.27
dpd	8.17	7.30	0.718	1.00
bv1	11.0	9.65	1.28	2.26
bv2	4.46	4.46	0	6.60 x 10 ⁻²
ov1	7.75	6.71	0.604	0.949
ov2	4.99	4.91	0	$7.50 \ge 10^{-2}$

Figur 5.5 Estimeret middeloverskridelse med tilhørende approksimativt 68% konfidensinterval (givet som \pm én gange spredningen) for 24 timers intensiteten ved de enkelte stationer sammenholdt med det simple gennemsnit og GLS middelværdi estimatet.

Figur 5.6 GLS estimater af L-CV og L-skævhed sammenholdt med de teoretiske udtryk for generaliseret Pareto (GP), log-normal (LN), gamma (GAM), Weibull (WEI) og eksponential (EXP) fordelingen.

For de variable, der kan regnes for homogene afviger GLS middelværdien kun marginalt fra det simple regionale gennemsnit. For de øvrige variable er GLS middelværdien signifikant mindre end det simple gennemsnit. Dette skyldes, at middelværdien af overskridelserne for en del tætliggende stationer i København ligger over gennemsnittet (se Figur 5.5 som eksempel), og da disse stationer er meget korrelerede får de en betydelig mindre vægt i GLS modellen end ved simpel midlen. Effekten ses at være afhængig af den betragtede varighed, idet den er mindre udpræget for intensiteter med små varigheder (i3h og i6h).

L-CV og L-skævhed

Resultater for L-moment estimaterne, L-CV og L-skævhed, fremgår af Tabel 5.3. For intensiteter med små varigheder (i10m, i30m, i60m) afviger station 20211 markant fra gruppen af stationer som helhed (stor værdi af Cook's D). For 24 timers intensiteten afviger station 22361. Beregninger hvor disse outlier stationer er ekskluderet fremgår desuden af Tabel 5.3.

	L-CV				L-Skævhed			
Variabel	Simpel middel	GLS middel	Residual varians (x 10 ⁻⁴)	Pred. varians (x 10 ⁻⁴)	Simpel middel	GLS middel	Residual varians (x 10 ⁻⁴)	Pred. varians (x 10 ⁻⁴)
i10m	0.516	0.519	3.31	3.97	0.369	0.376	0.998	2.53
i10m(÷20211)	0.513	0.516	0	0.581	0.365	0.371	0	1.55
i30m	0.541	0.548	0	0.640	0.375	0.383	4.17	5.89
i30m(÷20211)	0.539	0.545	0	0.662	0.371	0.378	0	1.65
i60m	0.534	0.541	2.09	2.92	0.370	0.377	1.18	3.12
i60m(÷20211)	0.531	0.536	0	0.788	0.365	0.371	0	1.97
i3h	0.523	0.521	0	1.15	0.381	0.369	0	2.77
i6h	0.545	0.542	0	1.57	0.404	0.393	0	3.51
i12h	0.537	0.536	0	2.02	0.391	0.390	0	4.28
i24h	0.547	0.543	0	2.00	0.396	0.402	21.0	26.3
i24h(÷22361)	0.549	0.546	0	2.04	0.400	0.417	0	4.38
i48h	0.539	0.528	6.99	9.31	0.385	0.368	19.7	24.4
dph	0.550	0.544	0	2.03	0.419	0.411	0	4.3
dpd	0.513	0.520	4.04	5.67	0.359	0.388	8.50	12.0
bv1	0.563	0.534	2.40	2.53	0.420	0.395	12.6	18.0
bv2	0.559	0.553	11.3	13.1	0.416	0.404	22.2	26.2
ov1	0.561	0.558	0	1.88	0.422	0.419	0	4.07
ov2	0.545	0.537	13.6	15.4	0.404	0.383	2.78	6.00

Tabel 5.3 GLS regional middelværdi model for L-CV og L-skævhed.

Resultaterne indikerer, at for 9 af de i alt 14 analyserede variable kan de højere ordens momenter antages at være homogene. De tre variable (i48h, bv2, ov2), som gav anledning til signifikante heterogenitets mål i analysen af L-momenter i Afsnit 4, indikerer også i dette tilfælde at regionen er heterogen. Men derudover udviser døgnnedbøren og bassinvolumen for små afløbstal signifikant regional variabilitet. For intensiteten er prediktionsvariansen større jo større varighed der betragtes, hvilket er grundet i den voksende spatiale korrelation, og dermed mindre regionale informationsværdi, for voksende varighed.

Sammenhørende værdier af L-CV og L-skævhed estimater er vist i Figur 5.6. Sammenholdes GLS estimaterne med de vægtede estimater i Figur 4.2 ses en betydelig forskel for de variable, der har en signifikant regional variabilitet (i48h, dpd, bv1, bv2, ov2). Det vægtede estimat er et specialtilfælde af GLS estimatet i tilfælde af uafhængige og homogene data, jvf. (5.6). Man vil derfor forvente, at heterogenitet og stor korrelation kan give GLS estimater, der er signifikant forskellige fra de vægtede estimater. Det bemærkes af Figur 5.6 at der ikke er nogen umiddelbar sammenhæng mellem varigheden og beliggenheden i L-moment diagrammet.

I modsætning til Poisson parameteren og middeloverskridelsen er der ikke for de højere ordens momenter en entydig sammenhæng mellem resultaterne for intensiteter med små varigheder og bassin- og overløbsvolumen for store afløbstal, henholdsvis intensiteter med små varigheder og bassin- og overløbsvolumen for store afløbstal. Dette kan forklares ved, at for de højere ordens momenter er der betydelig større sampling usikkerheder tilknyttet de enkelte estimater, og det kan derfor være sværere klart at diskriminere mellem homogene og heterogene grupper.

5.4 Regional T-års estimation

På baggrund af de regionalt estimerede PDS parametre og prediktionsvarianser er det nu muligt at bestemme et regionalt estimat for T-års hændelsen med tilhørende usikkerhedsmål. For GP fordelte data er T-års hændelsen givet ved

$$z_T = z_0 + \boldsymbol{m} \frac{1 + \boldsymbol{k}}{\boldsymbol{k}} \left[1 - \left(\frac{1}{\boldsymbol{l}T}\right)^{\boldsymbol{k}} \right]$$
(5.13)

hvor z_0 er det benyttede afskæringsniveau, λ er Poisson parameteren, μ er middeloverskridelsen, og κ er formparameteren. Formparameteren i GP fordelingen er relateret til L-CV ved

$$\boldsymbol{k} = \frac{1}{\boldsymbol{t}_2} - 2 \tag{5.14}$$

Et regionalt estimat af T-års hændelsen fås da af (5.13) ved at indsætte de regionale PDS parameterestimater.

Variansen på det regionale PDS estimat er approksimativt givet ved

$$\operatorname{Var}\left\{\hat{z}_{\mathrm{T}}\right\} = \left(\frac{\partial z_{\mathrm{T}}}{\partial \lambda}\right)^{2} \operatorname{Var}\left\{\hat{\lambda}\right\} + \left(\frac{\partial z_{\mathrm{T}}}{\partial \mu}\right)^{2} \operatorname{Var}\left\{\hat{\mu}\right\} + \left(\frac{\partial z_{\mathrm{T}}}{\partial \kappa}\right)^{2} \operatorname{Var}\left\{\hat{\kappa}\right\}$$
(5.15)

hvor de partielt afledede kan bestemmes af (5.13). På basis af variansen på L-CV estimatet kan variansen på estimatet af formparameteren findes af følgende approksimative udtryk

$$\operatorname{Var}\left\{\boldsymbol{k}\right\} = \left(\frac{\boldsymbol{n}\boldsymbol{k}}{\boldsymbol{n}\boldsymbol{t}_{2}}\right)^{2} \operatorname{Var}\left\{\boldsymbol{\hat{t}}_{2}\right\} = \frac{1}{\boldsymbol{t}_{2}^{4}} \operatorname{Var}\left\{\boldsymbol{\hat{t}}_{2}\right\}$$
(5.16)

Et estimat af usikkerheden på det regionale T-års estimat findes da af (5.15) ved indsættelse af de regionale PDS parameterestimater og tilhørende prediktionsvarianser, jvf. Tabel 5.1 - Tabel 5.3.

Som eksempel er *T*-års estimatet for 10 min. intensiteten vist i Figur 5.7, og de enkelte parametres bidrag til den totale varians i (5.15) er vist i Figur 5.8 som funktion af gentagelsesperioden. Generelt er usikkerheden på *T*-års estimatet en voksende funktion af *T*. Usikkerheden på Poisson parameteren giver det største bidrag til usikkerheden på *T*-års estimatet for små gentagelsesperioder. Omvendt for formparameteren, hvor usikkerheden har størst betydning for store gentagelsesperioder. Usikkerheden på middeloverskridelsen har størst betydning for moderate gentagelsesperioder (*T* i størrelsesordenen 10 år).

Figur 5.7 Regionalt *T*-års estimat for 10 min. intensiteten med tilhørende approksimativt 68% konfidensinterval.

Figur 5.8 Relativt bidrag af prediktionsvariansen på de enkelte PDS parameterestimater til den samlede varians på det regionale *T*-års estimat for 10 min. intensiteten.

Den relative usikkerhed på det regionale *T*-års estimat (spredning divideret med estimatet) for de 14 analyserede variable er vist i Figur 5.9. Generelt er der større usikkerhed på *T*-års estimatet jo større varighed der betragtes. For intensiteter med små varigheder (i10m, i30m og i60m) kan der kun påvises en regional heterogenitet for Poisson parameteren, og da korrelationen grundet samtidige hændelser samtidig er forholdsvis lille fås en meget lille usikkerhed på *T*-års estimatet. For større varigheder (i3h, i6h, i12h og i24h) udviser både Poisson parameteren og middeloverskridelsen en signifikant regional variabilitet, hvilket giver en generelt større usikkerhed på *T*-års estimatet. Den større prediktionsvarians på både middeloverskridelsen og formparameteren for voksende varighed bevirker en større usikkerhed på *T*-års estimatet jo større varighed der betragtes. For 48 timers intensiteten udviser samtlige PDS parametre en signifikant regional variabilitet, hvilket giver en væsentlig større usikkerhed på *T*-års estimatet i forhold til de øvrige variable.

Af de betragtede volumen variable er der en meget stor usikkerhed på *T*-års estimatet for bassin- og overløbsvolumen med stort afløbstal, idet L-CV udviser en betydelig regional variabilitet, jvf. Tabel 5.3. For regndybden og overløbsvolumen med lille afløbstal kan L-CV antages homogen og der fås derfor en betydelig mindre usikkerhed på *T*-års estimatet for disse variable.

De estimerede *T*-års hændelser med tilhørende usikkerhed for intensiteter med forskellig varighed er afbildet som traditionelle IDF kurver i Figur 5.10. Til sammenligning er den

hidtil benyttede IDF kurve, Landsregnrækken (Spildevandskomiteen, 1974) afbildet. For små gentagelsesperioder ligger Landsregnrækken indenfor 68% konfidensgrænserne af det regionale estimat for varigheder på ca. en time og derover. For varigheder under en time ligger Landsregnrækken betydeligt over det regionale estimat. For voksende gentagelsesperiode afviger Landsregnrækken fra det regionale estimat for større og større varigheder. F.eks. for T = 20 år, er intensiteterne bestemt ved Landsregnrækken signifikant højere end de tilsvarende regionale estimater for varigheder på under 6 timer. For varigheder over 6 timer er der derimod en meget god overensstemmelse mellem Landsregnrækken og det regionale estimat.

Figur 5.9 Relativ spredning på det regionale *T*-års estimat for de analyserede variable.

Figur 5.10 Sammenligning af regionalt *T*-års estimat og Landsregnrækken (Spildevandskomiteen, 1974) for T = 1 år (øverst) og T = 20 år (nederst).

6. Modellering af regional variabilitet

6.1 Regionale modeller

For de parametre, der ikke kan antages at være homogene i regionen, er det næste skridt at forsøge at modellere den regionale variabilitet for derved at reducere den residuale usikkerhed. To principielt forskellige modeller kan benyttes i denne forbindelse:

- (1) Opdeling af regionen i to eller flere subregioner, der kan regnes for at være mere homogene end den samlede region.
- (2) Modellering af parametrene ved regression med relevante klimatiske og fysiografiske karakteristika.

Opdeling i subregioner

Den mest simple form for opdeling i subregioner baseres på stationernes geografiske placering, motiveret af at stationer der ligger tæt sammen generelt er mere ens end stationer der ligger langt fra hinanden. I stedet for geografisk placering kan andre stationskarakteristika benyttes til opdeling i subregioner. F.eks. kan stationerne inddeles på basis af topografien eller på basis af generelle klimatiske variable, såsom årsmiddelnedbøren. Nogle metoder benytter også ekstremværdikarakteristika til opdelingen, men i sådanne tilfælde kræves observationer for at kunne indplacere stationer i subregioner, og disse metoder er derfor ikke velegnede til generel beskrivelse af ekstremhændelser for umålte lokaliteter.

Baseret på en given opdeling af regionen kan hver subregion analyseres, og den regionale middelværdi og tilhørende prediktionsusikkerhed kan estimeres ved brug af GLS middelværdimodellen som beskrevet ovenfor. Det bør her bemærkes, at opdeling i subregioner giver skarpt afgrænsede regioner og skaber derved diskontinuiteter i ekstremværdikarakteristika. I stedet for en skarp opdeling baseret på en karakteristisk variabel, kan den pågældende variabel benyttes som regressor i en regressionsmodel, hvorved der opnås en kontinuert beskrivelse af ekstremværdikarakteristika.

Regressionsmodel

Den benyttede regressionsmodel er en naturlig udvidelse af GLS middelværdimodellen. En PDS parameter, q_i , antages at kunne beskrives ved følgende lineære model

$$\boldsymbol{q}_{i} = \boldsymbol{b}_{0} + \sum_{k=1}^{p} \boldsymbol{b}_{k} A_{ik} + \boldsymbol{d}_{i} , \quad i = 1, 2, ..., M$$
 (6.1)

hvor A_{ik} er de betragtede forklarende variable (regressorer), b_k er regressionsparametrene, og d_i er residualfejlen. Estimaterne af PDS parametrene antages at være behæftede med sampling fejl, jvf. (5.1), og kovariansstrukturen af den resulterende fejl (sampling fejl + residualfejl) antages at kunne beskrives ved matricen Λ , jvf. (5.5).

I matrix notation kan (5.1) og (6.1) skrives som $\Theta = X\mathbf{b} + \mathbf{h}$, hvor

$$\Theta = (\hat{\boldsymbol{q}}_{1}, \hat{\boldsymbol{q}}_{2}, \dots, \hat{\boldsymbol{q}}_{M})^{\mathrm{T}}$$

$$\boldsymbol{b} = (\boldsymbol{b}_{0}, \boldsymbol{b}_{1}, \dots, \boldsymbol{b}_{p})^{\mathrm{T}}$$

$$\boldsymbol{h} = (\boldsymbol{e}_{1} + \boldsymbol{d}_{1}, \boldsymbol{e}_{2} + \boldsymbol{d}_{2}, \dots, \boldsymbol{e}_{M} + \boldsymbol{d}_{M})^{\mathrm{T}}$$

$$\boldsymbol{X} = \begin{pmatrix} 1 & A_{11} & \cdots & A_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & A_{M1} & \cdots & A_{Mp} \end{pmatrix}$$
(6.2)

GLS estimater af regressionsparametrene **b** og residualvariansen s_d^2 findes da af følgende ligningssystem

$$\left[X^{\mathrm{T}}\Lambda^{-1}X\right]\boldsymbol{b} = X^{\mathrm{T}}\Lambda^{-1}\Theta \qquad , \qquad \left(\Theta - X\boldsymbol{b}\right)^{\mathrm{T}}\Lambda^{-1}\left(\Theta - X\boldsymbol{b}\right) = M - p - 1 \qquad (6.3)$$

som skal løses iterativt. I situationer hvor ingen positiv værdi af s_d^2 opfylder (6.3), kan det antages at forskellen mellem Θ og Xb alene kan beskrives af sampling usikkerheder, og residualvariansen er da lig 0. Ved løsning af (6.3) benyttes estimater af PDS parametrenes sampling varianser og tilhørende korrelationsstruktur som beskrevet i Afsnit 5.

På et arbitrært sted i regionen, hvor stationskarakteristika $x_i^{T} = (1, A_{i1}, A_{i2}, ..., A_{ip})$ er kendte, kan PDS parameteren q_i estimeres af (6.1). Prediktionsvariansen på dette estimat er givet ved

$$\operatorname{Var}\left\{\hat{\boldsymbol{q}}_{i}\right\} = \boldsymbol{x}_{i}^{\mathrm{T}}\boldsymbol{\Sigma}_{\boldsymbol{b}}\boldsymbol{x}_{i} + \hat{\boldsymbol{S}}_{\boldsymbol{d}}^{2}$$

$$(6.4)$$

hvor $\Sigma_b = (X^T \Lambda^{-1} X)^{-1}$ er kovariansmatricen for de estimerede regressionsparametre. Benyttes én beskrivende variabel fås specielt

$$\hat{\boldsymbol{q}}_{i} = \hat{\boldsymbol{b}}_{0} + \hat{\boldsymbol{b}}_{1}A_{i}$$

$$\operatorname{Var}\left\{\hat{\boldsymbol{q}}_{i}\right\} = \operatorname{Var}\left\{\hat{\boldsymbol{b}}_{0}\right\} + 2A_{i}\operatorname{Cov}\left\{\hat{\boldsymbol{b}}_{0}, \hat{\boldsymbol{b}}_{1}\right\} + A_{i}^{2}\operatorname{Var}\left\{\hat{\boldsymbol{b}}_{1}\right\} + \hat{\boldsymbol{s}}_{d}^{2}$$
(6.5)

hvor

.

$$\Sigma_{\boldsymbol{b}} = \begin{pmatrix} \operatorname{Var} \{ \hat{\boldsymbol{b}}_{0} \} & \operatorname{Cov} \{ \hat{\boldsymbol{b}}_{0}, \hat{\boldsymbol{b}}_{1} \} \\ \operatorname{Cov} \{ \hat{\boldsymbol{b}}_{0}, \hat{\boldsymbol{b}}_{1} \} & \operatorname{Var} \{ \hat{\boldsymbol{b}}_{1} \} \end{pmatrix} = (X^{\mathrm{T}} \Lambda^{-1} X)^{-1}$$
(6.6)

6.2 Regressorer

Følgende regressorer er benyttet i GLS modellen til beskrivelse af den regionale variabilitet af PDS parametrene:

- Klimatiske karakteristika:
 - Årsmiddelnedbør for normalnedbørsperioden 1961-1990, beregnet ved interpolation af nedbørsnormaler for i alt 300 lokaliteter i Danmark (Frich et al., 1997).
 - Årsmiddelnedbør for den pågældende måler, beregnet som gennemsnittet af samtlige registrerede nedbørshændelser og korrigeret for perioder med målerudfald.
- Fysiografiske karakteristika:
 - Målerens højde over havet.
 - Målerens geografiske placering (længdegrad, breddegrad).
 - Nærmeste afstand til havet, evt. en stor sø.
 - Nærmeste afstand til havet, evt. en stor sø, i retningerne S, SV og V.
- Målerens næromgivelser:
 - Læindeks, beregnet som middelværdien af højdevinklen målt i 8 retninger kompasrosen rundt. I situationer hvor der foreligger flere målinger af højdevinklen gældende for forskellige perioder tages gennemsnittet af disse.
 - Terrænhældning, beregnet som gennemsnittet imod retningerne S, SV og V. Terrænhældningen er målt i en afstand af 2.5 km fra måleren. I tilfælde af et højdepunkt der "skygger" måles terrænhældningen mellem måleren og højdepunktet.

Årsmiddelnedbøren for normalnedbørsperioden 1961-1990 bestemt ved interpolation kan ses som en generel klimatisk variabel, der udtrykker regional variation på forholdsvis stor skala. Den afspejler derfor ikke variationer på en skala svarende til størrelsen af de fleste urbane oplande i Danmark. For at teste betydningen af dette forhold er årsmiddelnedbøren målt på den pågældende måler også medtaget i regressionsanalysen. Denne værdi er ikke korrigeret og vil også generelt underestimere den "sande" årsmiddelnedbør, idet små nedbørshændelser (under 0.2 mm) ikke er registreret i KMD formatet. Den giver dog et mål for betydningen af den betragtede skala, idet den afspejler helt lokale forhold og derfor vil give en øvre grænse for informationsværdien af årsmiddelnedbøren. Sammenhørende værdier af årsmiddelnedbøren for de 41 stationer for normalnedbørsperioden 1961-1990 og målt på den pågældende måler er afbildet i Figur 6.1.

Målerens næromgivelser i form af læindeks og terrænhældning er også medtaget i regressionsanalysen. Disse parametre afspejler lokal "støj" ved måleren, der kan medføre en bias i nedbørsregistreringerne (generel under- eller overestimering). En eventuel signifikant korrelation mellem PDS parametre og læindeks og/eller terrænhældning vil derfor give et mål for den residuale usikkerhed grundet målestøj.

Figur 6.1 Sammenhørende værdier af årsmiddelnedbøren for normalnedbørsperioden 1961-1990 og målt på SVK måleren.

6.3 Modellering af PDS parametre

For de tre PDS parametre er regressionsmodellen analyseret for forskellig modelorden ved benyttelse af alle kombinationer af de tilgængelige regressorer. Ved vurdering af de forskellige modeller er det vigtigt at tage i betragtning, at prediktionsvariansen er en kombination dels af sampling varians, som inkluderer både usikkerheden på PDS parameterestimaterne og usikkerheden på de estimerede regressionsparametre, og dels residualvarians. Generelt gælder, at residualvariansen formindskes ved inkludering af en ekstra regressor. Til gengæld fås en forøgelse af sampling usikkerheden, idet en ekstra parameter skal estimeres. Ved endelig valg af regressionsmodel skal man desuden tage i betragtning, at den resulterende model skal være robust og derfor så simpel som mulig.

Som mål for regressionsmodellens beskrivelse af den regionale variabilitet benyttes den gennemsnitlige prediktionsvarians

$$\boldsymbol{s}_{\text{GLS}}^{2} = \frac{1}{M} \sum_{i=1}^{M} \text{Var}\left\{\hat{\boldsymbol{q}}_{i}\right\}$$
(6.7)

hvor $Var\{\hat{q}_i\}$ bestemmes af (6.4). Ved sammenligning af de forskellige modeller vælges generelt den model, der har den mindste gennemsnitlige prediktionsvarians. Såfremt medtagelse af en ekstra regressor kun giver anledning til en marginal reduktion af

prediktionsvariansen, medtages den pågældende regressor dog ikke i modellen, og modellen med den lavere modelorden bibeholdes.

Den totale regionale variabilitet, kvantificeret ved prediktionsvariansen i GLS middelværdimodellen s_q^2 , jvf. (5.7), kan principielt opdeles i tre forskellige bidrag:

- Variansreduktion, dvs. den del af den totale regionale variabilitet, der kan forklares af regressionsmodellen: s²_q s²_{GLS}.
- Residual varians fra regressionsmodellen s_d^2 , jvf. (6.3).
- Sampling varians, grundet sampling usikkerhed på PDS parameterestimaterne og usikkerhed på regressionsmodellens parameterestimater: $s_q^2 s_{GLS}^2 s_d^2$.

Et mål for regressionsmodellens gennemsnitlige variansreduktion kan da beregnes som

$$R^{2} = \frac{\boldsymbol{s}_{q}^{2} - \boldsymbol{s}_{GLS}^{2}}{\boldsymbol{s}_{q}^{2}}$$
(6.8)

I det følgende beskrives modelleringen af den regionale variabilitet af Poisson parameteren, middeloverskridelsen og L-CV (formparameter i GP fordelingen).

Poisson parameter

For Poisson parameteren beskriver årsmiddelnedbøren en signifikant del af den regionale variabilitet for alle 14 analyserede nedbørsvariable. Medtagelse af øvrige regressorer i modellen giver ingen eller kun en marginal reduktion af prediktionsvariansen. De estimerede regressionsparametre med tilhørende kovariansmatrix, den estimerede residualvarians samt forklaringsgraden fremgår af Tabel 6.1. Opsplitningen af den regionale variabilitet i variansreduktion, residualvarians og sampling varians er vist i Figur 6.2. Som eksempel er regressionsmodellen med tilhørende 95% konfidensinterval (svarende til \pm to gange spredningen) for 10 min. og 48 timers intensiteten vist i Figur 6.3.

Regressionsmodellerne angiver, at Poisson parameteren er en voksende funktion af årsmiddelnedbøren, dvs. for steder med stor årsmiddelnedbør registreres flere ekstreme regnhændelser. Årsmiddelnedbøren giver den største gennemsnitlige variansreduktion, i størrelsesordenen 70-80%, for intensiteter med stor varighed og bassin- og overløbs-volumen for små afløbstal, mens variansreduktionen er betydelig mindre, 15-30%, for intensiteter med små varigheder og bassin- og overløbsvolumen for store afløbstal. For regndybde og døgnnedbør ses også en forholdsvis stor korrelation med årsmiddelnedbøren med en gennemsnitlig variansreduktion på 60-70%.

Til sammenligning er der foretaget regression med årsmiddelnedbøren målt på den pågældende måler. Den gennemsnitlige variansreduktionen for denne regressionsmodel er vist på Figur 6.4. For samtlige analyserede variable fås en større variansreduktion end ved brug af årsmiddelnedbøren for normalnedbørsperioden 1961-1990. For 6 af variablene (i12h, i24h, i48h, dph, dpd, bv1) fås en residualvarians på 0, dvs. i disse tilfælde kan årsmiddelnedbøren fra måleren forklare hele den regionale variabilitet af

Variabel	$\hat{m{b}}_{0}$	\hat{b}_{1} [x 10 ⁻³]	$\operatorname{Var}\{\hat{\boldsymbol{b}}_0\}$	$\operatorname{Cov}\{\hat{\boldsymbol{b}}_0, \hat{\boldsymbol{b}}_1\}$ $[x \ 10^{-4}]$	Var{ \hat{b}_{1} } [x 10 ⁻⁶]	Residual varians	R^2
i10m	0.531	4.19	0.677	-9.95	1.55	0.120	0.30
i30m	0.0807	4.69	0.794	-11.7	1.83	0.181	0.28
i60m	0.428	4.15	0.799	-11.8	1.83	0.184	0.22
i3h	0.973	3.17	0.759	-11.2	1.74	0.172	0.13
i6h	-0.142	4.60	0.491	-6.88	1.08	0.0708	0.42
i12h	-1.40	6.11	0.404	-5.72	0.894	0.0428	0.67
i24h	-3.31	9.25	0.439	-6.16	0.964	0.0559	0.80
i48h	-4.19	11.2	0.533	-7.54	1.18	0.0753	0.82
dph	-0.594	5.80	0.483	-6.71	1.05	0.0537	0.58
dpd	-2.43	8.30	0.522	-7.50	1.17	0.0704	0.74
bv1	-2.63	8.46	0.480	-6.85	1.07	0.0595	0.76
bv2	0.899	3.01	0.686	-10.2	1.59	0.142	0.14
ov1	-0.479	5.35	0.521	-7.33	1.15	0.0781	0.48
ov2	0.133	4.24	0.750	-11.2	1.74	0.169	0.25

Tabel 6.1 Resultater af GLS regressionsmodel for Poisson parameteren som funktion af årsmiddelnedbøren.

Poisson parameteren, og den resulterende prediktionsvarians skyldes alene sampling

usikkerheder.

Figur 6.2 Relative bidrag af variansreduktion, residualvarians og sampling varians til den samlede regionale varians af Poisson parameteren.

Figur 6.3 Regressionsmodel for Poisson parameteren som funktion af årsmiddelnedbøren for henholdsvis 10 min. intensiteten (øverst) og 48 timers intensiteten (nederst) med tilhørende 95% konfidensinterval, sammenlignet med observationer.

Figur 6.4 Variansreduktion for regressionsmodel af Poisson parameteren baseret på årsmiddelnedbør for normalnedbørsperioden 1961-1990 og årsmiddelnedbør beregnet på SVK måler.

Middeloverskridelse

For middeloverskridelsen anvendes GLS regressionsmodellen for 9 af de analyserede variable (i3h, i6h, i12h, i24h, i48h, dph, dpd, bv2, ov2), idet de øvrige variable kan antages homogene, jvf. Afsnit 5. Resultaterne viser for samtlige variable, at ingen af de betragtede klimatiske og fysiografiske regressorer er i stand til at beskrive den regionale variabilitet (der er ingen eller kun en marginal reduktion af prediktionsvariansen i forhold til den regionale middelværdimodel).

For 3 af variablene (i3h, i6h, i12h) kan der imidlertid ses en korrelation med læindekset, med en gennemsnitlig variansreduktion i størrelsesordenen 15-20%. Middeloverskridelsen er en voksende funktion af læindekset, dvs. der er en tendens til at målere med bedre læforhold generelt registrerer større ekstremnedbør (se Figur 6.5 som eksempel). Effekten af målerens næromgivelser kan tolkes som udtryk for en underliggende residual variabilitet, der skal medtages i det resulterende usikkerhedsmål. Alternativt bør man foretage en korrektion af nedbørsmålingerne for at eliminere effekten.

Som nævnt ovenfor er der en tendens til, at middeloverskridelsen ligger generelt højere i Københavnsområdet end i resten af landet. Denne "Københavner effekt" er tidligere beskrevet i Arnbjerg-Nielsen et al. (1996). Årsagen er givetvis storby effekter som luft forurening og generel opvarmning. Det synes derfor rimeligt at formulere en regional

model, der opdeler Danmark i to subregioner, henholdsvis Københavnsområdet, hvor ekstremnedbør er stærkt påvirket af storby effekter, og resten af landet.

København øst	København vest		
30211	30191		
30311	30221		
30312	30222		
30313	30314		
30351	30315		
30352	30316		
30353	30317		
	30318		
	30319		
	30321		

Tabel 6.2 SVK stationer i Københavnsområdet opdelt i stationer beliggende længst mod øst (kystnære stationer) og øvrige stationer.

Figur 6.5 Regressionsmodel for middeloverskridelsen som funktion af læindekset for 3 timers intensiteten med tilhørende 95% konfidensinterval, sammenlignet med observationer.

Figur 6.6 Middeloverskridelser for 3 timers intensiteten (øverst) og 48 timers intensiteten (nederst).

Middeloverskridelser for samtlige 41 stationer er vist i Figur 6.6 for 3 timers og 48 timers intensiteten. De 17 stationer i Københavnsområdet, jvf. Tabel 6.2, er fremhævet i figuren. For de mindre varigheder (i3h, i6h og i12h) kan de 17 stationer opdeles i 2 grupper, bestående af henholdsvis 7 stationer beliggende længst mod øst (kystnære

stationer), der har et niveau svarende til resten af landet, og de resterende 10 stationer, der generelt har et betydeligt højere niveau. For intensiteter med store varigheder (i24h og i48h) og for volumen variablene dph, dpd, bv1 og ov1 er der derimod ingen generel niveauforskel mellem de 7 østligste og de resterende 10 stationer. En regional modellering af middeloverskridelsen baseres derfor på følgende subregionale opdeling:

- "Det øvrige Danmark", bestående af stationer udenfor Københavnsområdet
- "København øst", bestående af stationer i Københavnsområdet beliggende længst mod øst (kystnære stationer)
- "København vest", bestående af øvrige stationer i Københavnsområdet

For 3, 6 og 12 timers intensiteten udgør "Det øvrige Danmark" og "København øst" en samlet region. For de øvrige nedbørsvariable udgør "København øst" og "København vest" en samlet region.

Det bemærkes af Figur 6.6, at der for 48 timers intensiteten er en tendens til, at de øvrige stationer på Sjælland og Lolland-Falster har et højere niveau end stationerne i Jylland og på Fyn. Dette er dog ikke forfulgt nærmere i denne fremstilling, og resultaterne som beskrevet nedenfor indikerer at der ikke er en signifikant forskel mellem landsdelene.

Resultater ved benyttelse af GLS middelværdimodellen for de to subregioner fremgår af Tabel 6.3. For subregionen "Det øvrige Danmark" fås for samtlige variable en residualvarians lig 0, og indikerer derved at middeloverskridelsen kan antages homogen i denne subregion. For Københavnsområdet er der derimod en signifikant variabilitet mellem stationerne. Da stationerne ydermere er stærkt korrelerede er der en stor sampling usikkerhed, og den resulterende prediktionsvarians er derfor betydelig større end i resten af landet. Middeloverskridelsen for de københavnske stationer ses at være signifikant højere end i resten af landet. Niveauet for "Det øvrige Danmark" afviger kun marginalt fra det generelle niveau estimeret på basis af samtlige 41 stationer, jvf. Afsnit 5, idet de københavnske stationer her fik en forholdsvis lille vægt i beregningen af GLS estimatet.

	Kø	benhavnsomr	ådet	Det øvrige Danmark			
Variabel	GLS middel	Residual varians	Pred. varians	GLS middel	Residual varians	Pred. varians	
i3h	0.517	2.41 x 10 ⁻³	5.74 x 10 ⁻³	0.432	0	6.04 x 10 ⁻⁴	
i6h	0.340	6.83 x 10 ⁻⁴	2.30 x 10 ⁻³	0.257	0	3.26 x 10 ⁻⁴	
i12h	0.234	1.04 x 10 ⁻⁴	8.05 x 10 ⁻⁴	0.162	0	1.70 x 10 ⁻⁴	
i24h	0.131	1.76 x 10 ⁻⁴	4.73 x 10 ⁻⁴	0.0940	0	7.60 x 10 ⁻⁵	
i48h	0.0756	6.44 x 10 ⁻⁵	1.61 x 10 ⁻⁴	0.0581	0	2.49 x 10 ⁻⁵	
dph	9.33	1.31	2.83	7.14	0	0.420	
dpd	9.95	1.16	2.35	7.03	0	0.249	
bv1	13.7	2.38	5.73	8.99	0	0.882	
ov1	8.94	0.987	2.34	6.53	0	0.328	

Tabel 6.3 Resultater af GLS middelværdimodel for middeloverskridelsen ved inddelingi to subregioner: (1) Københavnsområdet, og (2) Det øvrige Danmark.

Som nævnt ovenfor er ingen af de betragtede regressorer i stand til at forklare den regionale variabilitet af middeloverskridelsen. En væsentlig informationskilde, som ikke er medtaget i nærværende analyse, er ekstremværdikarakteristika af døgnnedbøren fra nettet af manuelle Hellmann målere. For en indledende analyse af informationsværdien af denne regressor er der foretaget en regressionsanalyse med middeloverskridelsen af døgnnedbøren for den pågældende SVK måler. Som eksempel er GLS regressionsmodellen for 12 timers intensiteten vist i Figur 6.7. I dette tilfælde giver middeloverskridelsen af døgnnedbøren en gennemsnitlig variansreduktion på ca. 50%. Brugen af døgnnedbør til beskrivelse af den regionale variabilitet vil ikke blive behandlet nærmere i denne sammenhæng. Ovenstående eksempel er medtaget for at illustrere potentialet for udnyttelse af ekstremværdikarakteristika fra Hellmann målerne.

Figur 6.7 Regressionsmodel for middeloverskridelsen for 12 timers intensiteten som funktion af middeloverskridelsen for døgnnedbøren med tilhørende 95% konfidensinterval, sammenlignet med observationer.

L-CV

Som vist i Afsnit 5 kan L-CV for 9 af de 14 analyserede nedbørsvariable antages at være homogen. GLS regressionsmodellen benyttes for de resterende 5 variable (i48h, dpd, bv1, bv2 og ov2).

For ingen af de 5 variable er de betragtede klimatiske og fysiografiske karakteristika i stand til at beskrive den regionale variabilitet. For to af variablene (bv2 og ov2) er der en signifikant korrelation med læindekset med en gennemsnitlig variansreduktion på henholdsvis 53% for bv2 og 18% for ov2. For begge variable er L-CV en voksende

funktion af læindekset (se Figur 6.8 som eksempel). Som nævnt ovenfor er korrelationen med læindekset en underliggende residualfejl (målestøj) som ikke kan elimineres med mindre der foretages en korrektion af nedbørsmålingerne.

For to variable (i48h og bv1) er der en tendens til at stationerne i Københavnsområdet har en højere L-CV end stationerne i den øvrige del af landet. Tendensen er dog mindre tydelig end for middeloverskridelsen, idet også en del stationer på den øvrige del af Sjælland, på Lolland-Falster samt de to stationer i Ålborg området også har forholdsvis store værdier af L-CV. Generelt er der meget stor sampling usikkerhed på L-CV estimaterne, og der er derfor ikke fundet belæg for at foretage en inddeling i subregioner i dette tilfælde.

Sammenlagt må det konkluderes, at det ikke er muligt at forklare den regionale variabilitet af L-CV for de 5 variable, der udviser heterogenitet, og estimationen baseres derfor på den regionale middelværdimodel, jvf. Afsnit 5.

Figur 6.8 Regressionsmodel for L-CV som funktion af læindekset for bassinvolumen med afløbstal $a = 1 \mu m/s$ med tilhørende 95% konfidensinterval, sammenlignet med observationer.

6.4 Estimation af T-års hændelse

Baseret på de estimerede regionale modeller for PDS parametrene kan T-års hændelsen med tilhørende usikkerhed estimeres. Proceduren for estimation på en arbitrær lokalitet er følgende:

- (1) Estimation af Poisson parameteren. For den pågældende lokalitet bestemmes årsmiddelnedbøren på basis af nedbørsnormaler i Frich et al. (1997). Et estimat af Poisson parameteren og tilhørende prediktionsvarians bestemmes af (6.5), hvor regressionsparametrene, kovariansen af regressionsparametrene og residualvariansen er givet i Tabel 6.1.
- (2) Estimation af middeloverskridelsen. For intensiteter med små varigheder og bassinog overløbsvolumen for store afløbstal (i10m, i30m, i60m, bv2 og ov2) benyttes den regionale middelværdimodel baseret på samtlige stationer. Estimatet af middeloverskridelsen og tilhørende prediktionsvarians er givet i Tabel 5.2. For de øvrige nedbørsvariable afhænger estimatet af, om lokaliteten befinder sig i Københavnsområdet (opdelt i en vest og en øst region) eller i den øvrige del af landet. For 3, 6 og 12 timers intensiteten har København Øst samme niveau som i resten af landet, mens København Vest og København Øst udgør en samlet region for 24 og 48 timers intensiteten samt volumen variablene dph, dpd, bv1 og ov1. Estimat og tilhørende prediktionsvarians for subregionerne er givet i Tabel 6.3.
- (3) Estimation af formparameteren. For samtlige variable beskrives L-CV ved den regionale middelværdimodel baseret på samtlige stationer. Det regionale estimat og tilhørende prediktionsvarians er givet i Tabel 5.3. Formparameteren i GP fordelingen og den tilhørende usikkerhed bestemmes af (5.14) og (5.16).
- (4) Baseret på estimater og tilhørende prediktionsvarianser for de tre PDS parametre bestemmes *T*-års hændelsen og usikkerheden på *T*-års hændelsen af henholdsvis (5.13) og (5.15). Afskæringsniveauet er givet i Tabel 3.2.

Effekten af årsmiddelnedbøren er vist i Figur 6.9, hvor *T*-års estimatet i subregion "Det øvrige Danmark" for 10 min. og 24 timers intensiteten for årsmiddelnedbør på henholdsvis 500, 600, 700 og 800 mm er sammenholdt med 68% konfidensintervallet for *T*-års hændelsen baseret på den regionale middelværdimodel. Generelt gælder, at jo større årsmiddelnedbør jo større er *T*-års estimatet. Den relative effekt af årsmiddelnedbør på nelative forskel mellem *T*-års estimater for forskellig årsmiddelnedbør er større for intensiteter med store varigheder, bassin- og overløbsvolumen for små afløbstal, regndybden og døgnnedbøren. For små gentagelsesperioder (*T* mindre end omkring 10 år) er variabiliteten på *T*-års estimatet grundet forskellig årsmiddelnedbør større end den generelle usikkerhed baseret på den regionale middelværdimodel. For større gentagelsesperioder har variabiliteten af middeloverskridelsen og formparameteren (se Figur 5.8), og variabiliteten på *T*-års estimatet grundet forskellig årsmiddelnedbør overskygges i dette tilfælde af den generelle usikkerhed.

Effekten af forskellig niveau for middeloverskridelsen i de to subregioner er vist i Figur 6.10 for 24 timers intensiteten for en årsmiddelnedbør på 650 mm, svarende til gennemsnittet af årsmiddelnedbøren for de 41 analyserede stationer. *T*-års estimatet i Københavnsområdet er betydelig højere end i den øvrige del af landet, og forskellen mellem de to regioner er større jo større gentagelsesperiode, der betragtes. Sammenholdes med *T*-års estimatet baseret på den regionale middelværdimodel ses, at effekten af det højere niveau i København er signifikant selv for forholdsvis små gentagelsesperioder (ned til omkring T = 1 år).

Figur 6.9 *T*-års estimat i subregion "Det øvrige Danmark" for 10 min. intensiteten (øverst) og 24 timers intensiteten (nederst) for forskellige værdier af årsmiddelnedbøren (500, 600, 700 og 800 mm) sammenholdt med 68% konfidensintervallet baseret på den regionale middelværdimodel.

Figur 6.10 *T*-års estimat i de to subregioner "København" og "Det øvrige Danmark" for 24 timers intensiteten med årsmiddelnedbør på 650 mm sammenholdt med 68% konfidensintervallet baseret på den regionale middelværdimodel.

Usikkerheden på *T*-års estimatet i de to subregioner for intensiteter med forskellig varighed er vist i Figur 6.11. For intensiteter med små varigheder (i10m, i30m og i60m) er der ingen forskel mellem de to subregioner. I dette tilfælde er det kun Poisson parameteren, der modelleres regionalt, og da forklaringsgraden med årsmiddelnedbøren er forholdsvis lille fås kun en marginal reduktion af usikkerheden sammenholdt med den relative spredning på *T*-års estimatet baseret på den regional middelværdimodel (se Figur 5.9). For større varigheder ses en betydelig reduktion af usikkerheden for små gentagelsesperioder i forhold til den regionale middelværdimodel. Dette skyldes primært, at Poisson parameteren har en stor forklaringsgrad med årsmiddelnedbøren. For subregion "Det øvrige Danmark" kan middeloverskridelsen antages konstant, hvorfor usikkerheden i denne region generelt er betydelig mindre end usikkerheden større end i "Det øvrige Danmark". Det store spring til i48h skyldes, at formparameteren i dette tilfælde udviser en betydelig residual variabilitet.

Figur 6.11 Relativ spredning på *T*-års estimatet (spredning divideret med T-års estimat) for intensiteter med forskellige varigheder for de to subregioner "Det øvrige Danmark" (øverst) og "København" (nederst). Beregningerne er baseret på en årsmiddelnedbør på 650 mm.

Figur 6.12 Sammenligning af Landsregnrækken (Spildevandskomiteen, 1974) med de regionalt estimerede IDF kurver for "Det øvrige Danmark" (øverst) og "København" (nederst). De beregnede IDF kurver svarer til variationsbredden af årsmiddelnedbøren (ÅMN) i de to subregioner.

De regionale *T*-års estimater er sammenlignet med Landsregnrækken (Spildevandskomiteen, 1974) i Figur 6.12. Regionale IDF kurver er beregnet for to forskellige værdier af årsmiddelnedbøren, der reflekterer variationsbredden for normalnedbørsperioden 1961-1990 i de to subregioner (Frich et al., 1997), henholdsvis 550 mm og 675 mm for subregion "København" og 550 mm og 900 mm for subregion "Det øvrige Danmark". For intensiteter med små varigheder (1 time og derunder) ligger de regionale IDF kurver betydeligt under Landsregnrækken (bemærk at de to subregioner er ens i dette tilfælde). I subregion "Det øvrige Danmark" afviger Landsregnrækken fra de regionale IDF kurver for større og større varighed for voksende gentagelsesperiode. F.eks. for T = 20 år ligger Landsregnrækken betydeligt højere end de regionale IDF kurver for varigheder på under 6 timer. For større varigheder ligger Landsregnrækken indenfor variationsbredden af IDF kurverne. For subregion "København" er der derimod en betydelig forskel mellem Landsregnrækken og de regionale IDF kurver for store varigheder (over 3 timer). I dette tilfælde er *T*-års estimatet for "København" betydeligt højere end Landsregnrækken.

7. Klassificering af historiske regnserier

I afløbstekniske beregninger baseret på numeriske modeller benyttes som input tidsserier af regn givet som enten historiske eller syntetisk genererede regnserier. Til brug for valg af lokal regnserie for en given lokalitet til enten direkte anvendelse i den numeriske model eller som basis for kalibrering af en nedbørsgenerator beskrives i dette afsnit en klassificering af de 41 analyserede historiske regnserier i forhold til den regionale ekstremværdimodel. Årsmiddelnedbør og den subregionale placering af de 41 stationer er vist i Tabel 7.1.

Station	ÅMN [mm]	Region	Station	ÅMN [mm]	Region	Station	ÅMN [mm]	Region
20211	655	0	29041	550	0	30318	620	2
20461	710	0	30031	620	0	30319	635	2
22361	660	0	30191	665	2	30321	645	2
22421	720	0	30201	675	0	30351	575	1
23127	695	0	30211	605	1	30352	575	1
23261	790	0	30221	640	2	30353	555	1
23321	765	0	30222	640	2	30411	580	0
24292	825	0	30311	610	1	30451	585	0
25171	775	0	30312	610	1	31031	545	0
26091	790	0	30313	595	1	31151	580	0
26481	670	0	30314	615	2	31231	595	0
28181	670	0	30315	655	2	31401	565	0
28184	650	0	30316	610	2	31511	600	0
28186	655	0	30317	640	2			

Tabel 7.1 Årsmiddelnedbør (ÅMN) og subregional placering (0: "Det øvrige Danmark", 1: "København Øst", 2: "København Vest") for de 41 analyserede stationer.

Som mål for afvigelsen af den lokale regnserie fra den regionale ekstremværdimodel benyttes forskellen mellem det lokale og det regionale T-års estimat. For at kvantificere signifikansen af denne forskel relateres den til usikkerheden på det regionale T-års estimat. Målstørrelsen kan da defineres som

$$U = \frac{\hat{z}_{T,LOKAL} - \hat{z}_{T,REG}}{\sqrt{\operatorname{Var}\{\hat{z}_{T,REG}\}}}$$
(7.1)

hvor $\hat{z}_{T,LOKAL}$ er det lokale *T*-års estimat beregnet af (5.13) ved indsættelse af de lokalt estimerede PDS parametre, $\hat{z}_{T,REG}$ er det regionale *T*-års estimat beregnet jvf. proceduren beskrevet i Afsnit 6.4, og Var{ $\hat{z}_{T,REG}$ } er prediktionsvariansen på det regionale *T*-års estimat. Målstørrelsen kan gives en sandsynlighedsfortolkning, idet *U* er approksimativ normalfordelt. Dvs. det lokale *T*-års estimat kan beskrives som en given fraktil i den regionale fordeling af T-års hændelsen; f.eks. svarer U = -2 og U = 2 til henholdsvis 2.5% og 97.5% fraktilen.

Til klassificering af de enkelte regnserier inddeles i tre nedbørsklasser, der er karakteristiske for forskellige aspekter af modellering af afløbssystemer:

- (1) Intensiteter med små varigheder (op til 60 minutter) og bassin- og overløbsvolumen med stort afløbstal (i størrelsesordenen 1 μ m/s). Målstørrelsen beregnes som middelværdien af målstørrelserne for variablene i10m, i30m, i60m, bv2 og ov2.
- (2) Intensiteter med varigheder på 1-12 timer. Målstørrelsen beregnes som middelværdien af målstørrelserne for variablene i60m, i3h, i6h og i12h.
- (3) Intensiteter med store varigheder (over 12 timer) og bassin- og overløbsvolumen med lille afløbstal (i størrelsesordenen 0.1 μ m/s). Målstørrelsen beregnes som middelværdien af målstørrelserne for variablene i12h, i24h, i48h, bv1 og ov1.

Idet der kan være betydelige forskelle på de lokale regnseriers beliggenhed i forhold til den regionale model for forskellige gentagelsesperioder inddeles hver nedbørsklasse i tre forskellige klasser baseret på gentagelsesperioden:

- (1) Små gentagelsesperioder (1 < T < 5 år). Målstørrelsen beregnes som middelværdien af målstørrelserne for T = 1, 2 og 5 år.
- (2) Gentagelsesperiode 5 < T < 20 år. Målstørrelsen beregnes som middelværdien af målstørrelserne for T = 5, 10 og 20 år.
- (3) Store gentagelsesperioder (20 < T < 100 år). Målstørrelsen beregnes som middelværdien af målstørrelserne for T = 20, 50 og 100 år.

Klassificeringen af de 41 stationer er givet i Tabel 7.2 - Tabel 7.4. Af tabellerne kan konfidensniveauet for de enkelte regnserier aflæses. For eksempel svarer regnserien fra station 31401 i nedbørsklasse (2) til en 84% fraktil (U = 1) i fordelingen af *T*-års hændelsen. Dvs. i afløbstekniske beregninger, hvor intensiteter med varigheder på 1-12 timer er dimensionsgivende for det betragtede system vil benyttelse af station 31401 give et konfidensniveau på omkring 84% for de dimensionsgivende hændelser og derved implicit indbygge en vis sikkerhedsmargin i designet. For anvendelse på umålte steder kan klassificeringen benyttes til valg af en passende lokal regnserie. Baseret på den pågældende lokalitets årsmiddelnedbør og beliggenhed (i Københavnsområdet eller i det øvrige Danmark) og den for opgaven karakteristiske nedbørsklasse og gentagelsesperiode udvælges den regnserie som opfylder et fastsat sikkerhedsniveau (konfidensniveau).

Tabel 7.2 Klassificering af stationer for nedbørsklasse (1) "Intensiteter med små varigheder og bassin- og overløbsvolumen for store afløbstal" som funktion af årsmiddelnedbør (ÅMN) og gentagelsesperiode (*T*). Skravering angiver stationer der ligger over 97.5% fraktilen (U > 2), henholdsvis under 2.5% fraktilen (U < -2).

ÅMN	Station	Region	1 <t<5< th=""><th>5<t<20< th=""><th>20<t<100< th=""><th>Middel</th></t<100<></th></t<20<></th></t<5<>	5 <t<20< th=""><th>20<t<100< th=""><th>Middel</th></t<100<></th></t<20<>	20 <t<100< th=""><th>Middel</th></t<100<>	Middel
[mm]						
545	31031	0	-1.1	-0.5	0.5	-0.3
550	29041	0	-1.3	-0.4	0.9	-0.3
555	30353	1	-1.8	-2.2	-2.3	-2.1
565	31401	0	1.2	1.6	1.8	1.6
575	30351	1	-0.5	-0.7	-0.8	-0.7
575	30352	1	-2.1	-2.5	-2.4	-2.3
580	30411	0	0.2	0.6	1.1	0.6
580	31151	0	1.8	0.5	-0.3	0.7
585	30451	0	-0.9	-1.5	-1.8	-1.4
595	30313	1	-0.2	0.5	1.1	0.5
595	31231	0	-1.7	-1.8	-1.3	-1.6
600	31511	0	2.5	2.3	2.0	2.3
605	30211	1	-0.3	-1.0	-1.2	-0.9
610	30311	1	-0.2	-0.7	-0.9	-0.6
610	30312	1	-0.6	-1.6	-2.0	-1.4
610	30316	2	-0.6	-0.6	-0.5	-0.5
615	30314	2	1.4	1.0	0.6	1.0
620	30031	0	-1.0	-1.1	-1.2	-1.1
620	30318	2	3.2	2.7	2.0	2.6
635	30319	2	1.5	1.3	1.0	1.3
640	30221	2	0.0	0.7	1.3	0.7
640	30222	2	-1.5	-1.5	-1.6	-1.5
640	30317	2	-0.3	-0.5	-0.6	-0.5
645	30321	2	1.5	1.7	1.7	1.6
650	28184	0	-0.7	-0.6	-0.5	-0.6
655	20211	0	0.8	4.1	7.9	4.3
655	28186	0	0.6	0.0	-0.5	0.0
655	30315	2	3.6	3.0	2.4	3.0
660	22361	0	0.1	-1.1	-1.7	-0.9
665	30191	2	-2.6	-0.7	1.3	-0.7
670	26481	0	-0.4	-0.8	-0.8	-0.7
670	28181	0	-1.0	-0.6	0.0	-0.5
675	30201	0	-2.2	-2.9	-2.9	-2.6
695	23127	0	-0.7	-1.1	-1.2	-1.0
710	20461	0	-0.6	-0.9	-1.0	-0.8
720	22421	0	-2.6	-1.8	-1.2	-1.9
765	23321	0	-1.1	-1.3	-1.2	-1.2
775	25171	0	-0.5	-0.7	-0.6	-0.6
790	23261	0	2.6	3.9	4.9	3.8
790	26091	0	0.1	0.0	0.0	0.0
825	24292	0	0.2	2.5	4.3	2.4

Tabel 7.3 Klassificering af stationer for nedbørsklasse (2) "Intensiteter med varigheder på 1-12 timer" som funktion af årsmiddelnedbør (ÅMN) og gentagelsesperiode (*T*). Indeks K angiver stationer i Københavnsområdet. Skravering angiver stationer der ligger over 97.5% fraktilen (U > 2), henholdsvis under 2.5% fraktilen (U < -2).

ÅMN [mm]	Station	Region	1 <t<5< th=""><th>5<t<20< th=""><th>20<t<100< th=""><th>Middel</th></t<100<></th></t<20<></th></t<5<>	5 <t<20< th=""><th>20<t<100< th=""><th>Middel</th></t<100<></th></t<20<>	20 <t<100< th=""><th>Middel</th></t<100<>	Middel
545	31031	0	1.2	1.8	2.2	1.7
550	29041	0	-0.5	-0.4	-0.7	-0.5
555	30353	1	-1.7	-1.9	-2.1	-1.9
565	31401	0	0.2	0.9	1.8	1.0
575	30351	1	0.2	0.7	1.2	0.7
575	30352	1	-1.2	-0.9	-0.7	-0.9
580	30411	0	0.5	0.1	-0.2	0.1
580	31151	0	1.6	0.2	-0.7	0.4
585	30451	0	1.5	0.9	0.1	0.8
595	30313	1	0.3	1.5	2.5	1.4
595	31231	0	-0.5	-0.2	0.3	-0.2
600	31511	0	1.1	0.2	-0.3	0.3
605	30211	1	0.5	0.5	0.6	0.5
610	30311	1	1.1	0.9	0.8	0.9
610	30312	1	-0.7	-1.2	-1.3	-1.0
610	30316	2	-0.6	-0.4	-0.3	-0.4
615	30314	2	0.9	0.4	0.1	0.5
620	30031	0	-0.8	-0.3	0.2	-0.3
620	30318	2	1.3	0.8	0.6	0.9
635	30319	2	0.2	0.5	0.7	0.5
640	30221	2	0.2	0.1	0.1	0.1
640	30222	2	-1.3	-1.2	-1.1	-1.2
640	30317	2	-0.4	-0.2	0.0	-0.2
645	30321	2	0.5	0.5	0.4	0.5
650	28184	0	-2.0	-2.0	-1.6	-1.8
655	20211	0	0.6	2.4	4.2	2.4
655	28186	0	-0.2	0.1	0.3	0.0
655	30315	2	2.1	2.3	2.6	2.3
660	22361	0	1.1	0.0	-0.7	0.1
665	30191	2	-1.8	-0.1	1.8	0.0
670	26481	0	-0.9	-1.1	-0.9	-1.0
670	28181	0	-0.6	-0.9	-0.8	-0.8
675	30201	0	-0.6	-0.8	-0.6	-0.7
695	23127	0	-0.6	-1.6	-2.0	-1.4
710	20461	0	-1.2	-0.5	0.2	-0.5
720	22421	0	-1.5	-1.8	-1.9	-1.8
765	23321	0	-0.8	-1.0	-0.9	-0.9
775	25171	0	-0.6	-0.8	-0.9	-0.8
790	23261	0	0.3	0.3	0.7	0.4
790	26091	0	0.0	0.1	0.3	0.1
825	24292	0	-0.1	1.0	2.2	1.0

Tabel 7.4 Klassificering af stationer for nedbørsklasse (3) "Intensiteter med store varigheder og bassin- og overløbsvolumen for små afløbstal" som funktion af årsmiddelnedbør (ÅMN) og gentagelsesperiode (*T*). Indeks K angiver stationer i Københavnsområdet. Skravering angiver stationer der ligger over 97.5% fraktilen (U > 2), henholdsvis under 2.5% fraktilen (U < -2).

ÅMN	Station	Region	1 <t<5< th=""><th>5<t<20< th=""><th>20<t<100< th=""><th>Middel</th></t<100<></th></t<20<></th></t<5<>	5 <t<20< th=""><th>20<t<100< th=""><th>Middel</th></t<100<></th></t<20<>	20 <t<100< th=""><th>Middel</th></t<100<>	Middel
[mm]						
545	31031	0	2.3	2.9	3.0	2.7
550	29041	0	0.6	1.2	1.2	1.0
555	30353	1	-1.4	-1.1	-0.9	-1.2
565	31401	0	0.0	1.2	2.6	1.3
575	30351	1	-0.1	0.3	0.7	0.3
575	30352	1	-0.8	-0.3	0.0	-0.4
580	30411	0	1.2	1.3	1.2	1.2
580	31151	0	2.2	1.4	0.8	1.5
585	30451	0	2.9	2.9	2.3	2.7
595	30313	1	0.1	0.7	1.0	0.6
595	31231	0	-0.4	0.7	1.5	0.6
600	31511	0	1.4	0.9	0.9	1.1
605	30211	1	0.3	1.0	1.9	1.0
610	30311	1	1.0	0.8	0.6	0.8
610	30312	1	-0.9	-0.7	-0.4	-0.7
610	30316	2	-0.5	0.0	0.2	-0.1
615	30314	2	0.6	0.4	0.5	0.5
620	30031	0	-0.2	-0.3	-0.4	-0.3
620	30318	2	0.8	0.7	0.7	0.8
635	30319	2	0.1	0.6	0.9	0.6
640	30221	2	-0.1	0.2	0.7	0.3
640	30222	2	-1.2	-0.7	-0.3	-0.7
640	30317	2	-0.2	0.3	0.6	0.2
645	30321	2	0.2	0.6	0.9	0.6
650	28184	0	-1.8	-1.4	-1.1	-1.5
655	20211	0	-0.4	0.8	2.0	0.8
655	28186	0	0.0	0.5	0.9	0.5
655	30315	2	1.3	1.8	2.5	1.9
660	22361	0	1.2	-0.3	-1.1	-0.1
665	30191	2	-1.3	-0.1	0.9	-0.2
670	26481	0	-0.8	-1.4	-1.6	-1.3
670	28181	0	-0.3	-0.4	-0.4	-0.4
675	30201	0	0.2	0.5	0.7	0.5
695	23127	0	-0.9	-1.7	-1.9	-1.5
710	20461	0	-1.1	-0.1	0.8	-0.1
720	22421	0	-1.1	-1.0	-1.0	-1.0
765	23321	0	-1.1	-1.1	-0.7	-1.0
775	25171	0	-0.7	-1.3	-1.6	-1.2
790	23261	0	0.3	-0.7	-1.1	-0.5
790	26091	0	0.0	-0.2	-0.3	-0.2
825	24292	0	0.1	-0.2	-0.3	-0.2

Som det ses af Tabel 7.2 - Tabel 7.4 kan konfidensniveauet for den enkelte station variere betydeligt i de forskellige nedbørsklasser og for forskellige gentagelsesperioder. Enkelte generelle tendenser kan dog udledes af tabellerne. Generelt ligger stationerne 20211 og 30315 betydeligt over de øvrige stationer. Mens 20211 er mest ekstrem for små varigheder og store gentagelsesperioder, har 30315 et mere konstant niveau med en gennemsnitlig målstørrelse på U = 2.4, svarende til et konfidensniveau på omkring 99%. I den modsatte ende er station 30353, som ligger betydeligt under de øvrige stationer i samtlige nedbørsklasser med en gennemsnitlig målstørrelse på U = -1.8, svarende til et konfidensniveau på omkring 4%. Stationer der set over alle nedbørsklasser og gentagelsesperioder svarer til et middelniveau er 26091, 28186, 30316 og 30317.

Ovenstående målstørrelse giver et mål for den enkelte regnseries "beliggenhed" i forhold til den integrerede regionale model, der inkorporerer de regionale modeller for de tre PDS parametre. Til nærmere analyse af de historiske regnserier mht. den benyttede parameterisering anvendes en anden målstørrelse, der sammenligner de lokale PDS parameterestimater med de tilsvarende estimater fra de regionale modeller. Målstørrelsen er defineret som (Kuczera, 1983)

$$\Delta = \frac{(\hat{\boldsymbol{q}}_{\text{LOKAL}} - \hat{\boldsymbol{q}}_{\text{REG}})^2}{Var\{\hat{\boldsymbol{q}}_{\text{LOKAL}}\} + Var\{\hat{\boldsymbol{q}}_{\text{REG}}\}} - 1$$
(7.2)

hvor \hat{q}_{LOKAL} og \hat{q}_{REG} er henholdsvis det lokale og det regionale estimat af en PDS parameter og $Var\{\hat{q}_{\text{LOKAL}}\}$ og $Var\{\hat{q}_{\text{REG}}\}$ er de respektive usikkerheder. Forskellen mellem det lokale og det regionale estimat relateres i dette tilfælde til usikkerheden på både det lokale og det regionale estimat. Herved tages der eksplicit hensyn til den lokale tidsseries længde ved kvantificering af signifikansen af forskellen mellem det lokale og det regionale estimat (generelt tillades lokale estimater baseret på korte tidsserier at afvige mere fra det regionale estimat end lokale estimater baseret på lange tidsserier). For $\Delta < 0$ er forskellen mellem de to estimater ikke signifikant (forskellen er mindre end den resulterende variabilitet). For store positive værdier af Δ må det derimod antages at den pågældende station afviger signifikant fra den regionale model og evt. bør betragtes særskilt (outlier station).

Målstørrelsen kan ses som et generelt diskordans mål til identifikation af stationer der afviger signifikant fra gruppen af stationer som helhed og er i denne sammenhæng sammenlignelig med diskordans målet baseret på L-momenter beskrevet i Afsnit 4 og Cook's D størrelse for den regionale middelværdimodel beskrevet i Afsnit 5. Målstørrelsen i (7.2) er dog mere generel, idet den tager hensyn til usikkerheden på det lokale estimat og derved muliggør en efterfølgende vurdering af stationer med korte tidsserier, der ikke er medtaget ved estimation af den regionale model.

Målstørrelsen Δ er beregnet for de tre PDS parametre for de 41 analyserede stationer og for yderligere 19 stationer med mellem 5 til 10 års observationer (årsmiddelnedbør og subregional placering for disse stationer er vist i Tabel 7.5). Målstørrelsen er beregnet for hver af de 14 nedbørsvariable og efterfølgende midlet ved gruppering i de tre nedbørsklasser defineret ovenfor. Resultaterne er vist i Tabel 7.6 - Tabel 7.7.

Station	ÅMN [mm]	Region	Station	ÅMN [mm]	Region	Station	ÅMN [mm]	Region
20097	645	0	27119	560	0	30168	660	0
20099	630	0	28182	670	0	30208	620	1
20304	630	0	28183	665	0	30384	630	2
22321	645	0	29009	515	0	31406	555	0
22554	655	0	29291	670	0	32097	520	0
23345	815	0	29429	525	0			
27011	610	0	30131	600	0			

Tabel 7.5 Årsmiddelnedbør (ÅMN) og subregional placering (0: "Det øvrige Danmark", 1: "København Øst", 2: "København Vest") for de 19 stationer med 5-10 års observationer.

For de 41 analyserede stationer ses de mest signifikante afvigelser fra den regionale model for Poisson parameteren. For tre stationer (30191, 30315, 31151) afviger det lokale estimat af Poisson parameteren signifikant fra det regionale estimat for alle tre nedbørsklasser. For station 30315 er det lokale estimat af Poisson parameteren signifikant højere end det regionale estimat, hvilket også giver en stor U værdi for denne station (se Tabel 7.2 - Tabel 7.4). For stationerne 30191 og 31151 er der derimod ikke den samme generelle konsistens mellem de to målstørrelser. Dette skyldes, at de forskellige lokale PDS parameterestimater kan give modvirkende effekter ved beregning af T-års estimatet. Eksempelvis har station 30191 en stor negativ U værdi for små gentagelsesperioder (konsistent med at det lokale I estimat er signifikant mindre end det regionale estimat), hvorimod der ses en stor positiv U værdi for store gentagelsesperioder, idet det lokale k estimat er signifikant mindre (mere negativ) end det regionale estimat. Det generelt lave konfidensniveau for station 30353 og 22421 er et udslag af at det lokale estimat af Poisson parameteren er signifikant mindre end det regionale estimat, hvorimod det lave konfidensniveau for station 23321 skyldes en signifikant lavere lokal middeloverskridelse. Det høje konfidensniveau for station 20211 for specielt nedbørsklasse (1) og (2) skyldes en signifikant mindre (mere negativ) formparameter. I dette tilfælde er målstørrelsen Δ konsistent med Cook's D størrelse for variablene i10m. i30m og i60m, jvf. Tabel 5.3.

For de 19 stationer med korte observationsperioder er der relativt flere stationer, der afviger signifikant fra de regionale modeller. I 15 tilfælde afviger Poisson parameteren signifikant fra den regionale model, i 11 tilfælde afviger middeloverskridelsen og i et enkelt tilfælde afviger formparameteren. Afvigelse fra middeloverskridelsen konstateres specielt i nedbørsklasse (1), hvor 8 af de 19 stationer afviger signifikant fra den regionale model (middelværdimodel). Det er svært at konkludere, hvorvidt dette er udtryk for en reel afvigelse fra den regionale model eller blot er udtryk for en manglende repræsentativitet af den "sande" middeloverskridelse i de meget korte tidsserier, der betragtes her.

	Nedl	børsklass	e (1)	Ned	oørsklass	e (2)	Nedbørsklasse (3)		
Station	λ	μ	к	λ	μ	к	λ	μ	κ
20211	< 0	< 0	1.5 (-)	< 0	< 0	0.5 (-)	< 0	< 0	0.1
20461	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0
22361	< 0	< 0	0.3	< 0	< 0	< 0	< 0	< 0	0.9 (+)
22421	3.3 (-)	< 0	< 0	1.6 (-)	< 0	< 0	< 0	< 0	< 0
23127	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	0.9 (+)
23261	< 0	0.1	< 0	< 0	< 0	< 0	< 0	< 0	0.1
23321	< 0	0.5 (-)	< 0	< 0	< 0	< 0	< 0	1.4 (-)	< 0
24292	< 0	< 0	0.4	< 0	< 0	0.5 (-)	< 0	< 0	< 0
25171	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	0.3
26091	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0
26481	< 0	< 0	< 0	< 0	< 0	0.3	< 0	< 0	0.2
28181	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0
28184	< 0	< 0	0.8 (+)	< 0	3.2 (-)	< 0	0.2	< 0	< 0
28186	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0
29041	< 0	< 0	< 0	< 0	< 0	< 0	< 0	0.2	< 0
30031	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0
30191	2.1 (-)	< 0	0.7 (-)	2.8 (-)	< 0	0.1	0.9 (-)	< 0	< 0
30201	< 0	3.8 (-)	0.2	< 0	0.4	< 0	< 0	< 0	< 0
30211	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0
30221	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0
30222	0.9 (-)	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0
30311	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0
30312	< 0	0.5 (-)	< 0	< 0	< 0	< 0	< 0	< 0	< 0
30313	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0
30314	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0
30315	3.6 (+)	0.3	< 0	2.8 (+)	< 0	< 0	2.0 (+)	< 0	< 0
30316	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0
30317	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0
30318	1.4 (+)	0.3	< 0	1.0 (+)	< 0	< 0	< 0	< 0	< 0
30319	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0
30321	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0
30351	< 0	0.3	< 0	< 0	< 0	< 0	< 0	< 0	< 0
30352	< 0	0.2	< 0	0.1	< 0	< 0	< 0	< 0	< 0
30353	0.3	< 0	< 0	0.9 (-)	< 0	0.1	0.6 (-)	< 0	< 0
30411	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0
30451	< 0	< 0	< 0	< 0	0.2	< 0	< 0	1.2 (+)	< 0
31031	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0
31151	1.2 (+)	< 0	0.8 (+)	2.0 (+)	< 0	0.3	1.6 (+)	< 0	< 0
31231	< 0	0.2	< 0	< 0	< 0	< 0	< 0	< 0	< 0
31401	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	0.1
31511	< 0	< 0	< 0	0.6 (+)	< 0	< 0	0.9 (+)	< 0	< 0

Tabel 7.6 Målstørrelse Δ for de tre PDS parametre for de 41 analyserede stationer. For de mest signifikante stationer ($\Delta > 0.5$) er afvigelsen af det lokale estimat angivet; (-): $\hat{q}_{\text{LOKAL}} < \hat{q}_{\text{REG}}$, (+): $\hat{q}_{\text{LOKAL}} > \hat{q}_{\text{REG}}$.

Tabel 7.7 Målstørrelse Δ for de tre PDS parametre for de 19 stationer med mellem 5 til 10 års observationer. For de mest signifikante stationer ($\Delta > 0.5$) er afvigelsen af det lokale estimat angivet; (-): $\hat{q}_{LOKAL} < \hat{q}_{REG}$, (+): $\hat{q}_{LOKAL} > \hat{q}_{REG}$.

	Ned	børsklasse	e (1)	Ned	oørsklass	e (2)	Nedbørsklasse (3)		
Station	λ	μ	к	λ	μ	к	λ	μ	κ
20097	< 0	< 0	< 0	< 0	0.2	0.1	< 0	< 0	0.3
20099	< 0	0.5 (-)	< 0	< 0	< 0	< 0	< 0	< 0	0.2
20304	< 0	< 0	< 0	0.2	< 0	< 0	< 0	< 0	< 0
22321	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0
22554	< 0	5.4 (-)	0.2	< 0	0.8 (-)	0.4	< 0	< 0	< 0
23345	< 0	3.9 (-)	< 0	0.5 (-)	< 0	< 0	< 0	< 0	< 0
27011	3.8 (-)	< 0	< 0	1.0 (-)	< 0	< 0	0.6 (-)	< 0	0.2
27119	< 0	0.8 (-)	< 0	1.0 (-)	7.6 (-)	< 0	0.1	< 0	0.1
28182	< 0	< 0	< 0	< 0	< 0	< 0	0.4	< 0	< 0
28183	0.8 (+)	0.7 (+)	< 0	0.2	0.1	0.9 (-)	< 0	< 0	0.3
29009	< 0	0.6 (-)	< 0	< 0	< 0	< 0	< 0	< 0	< 0
29291	< 0	< 0	< 0	0.4	< 0	0.2	1.0 (+)	< 0	0.3
29429	< 0	< 0	< 0	< 0	< 0	< 0	1.2 (+)	< 0	< 0
30131	< 0	1.6 (+)	< 0	< 0	< 0	< 0	0.5 (-)	< 0	< 0
30168	< 0	2.1 (-)	< 0	0.5 (+)	< 0	< 0	0.6 (+)	< 0	< 0
30208	2.7 (-)	< 0	< 0	1.5 (-)	< 0	0.2	0.6 (-)	< 0	0.3
30384	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0
31406	< 0	< 0	< 0	< 0	0.1	0.4	< 0	1.7 (-)	< 0
32097	< 0	< 0	< 0	< 0	< 0	0.1	1.2 (+)	< 0	< 0

Sammen med L-moment diskordans målet (Afsnit 4) og Cook's D for den regionale middelværdimodel (Afsnit 5) danner klassificeringen ud fra målstørrelserne U og Δ grundlag for udpegelse af stationer der må betragtes som outliers i forhold til den regionale model, og målstørrelserne kan derved benyttes til en egentlig vurdering af disse stationer. I Tabel 7.8 er angivet de stationer, hvor de forskellige målstørrelser, set generelt over samtlige analyserede nedbørsvariable, viser en signifikant afvigelse fra den regionale model. En signifikant afvigelse kan skyldes flere forhold, f.eks. lokale forhold der ikke er inkluderet i de regionale modeller (eksempelvis kan den lokale årsmiddelnedbør afvige væsentligt fra den interpolerede normalnedbør), problemer mht. læforhold, målerkalibrering m.v. Det er uden for dette projekts rammer at analysere disse forhold nærmere.

	forskellige målstørrelser udviser signifikant afvigelse fra den regionale model.
Station	Signifikant målstørrelse
20211	Signifikant Cook's D målstørrelse for L-CV for intensiteter med lille varighed. Signifikant U målstørrelse, indikerer generelt højt <i>T</i> -års niveau.
30191	Signifikant Δ målstørrelse for Poisson parameter, indikerer lavt niveau.
30315	Signifikant U målstørrelse, indikerer generelt højt T-års niveau. Signifikant Δ målstørrelse for Poisson parameter, indikerer højt niveau.
30353	Signifikant U målstørrelse, indikerer generelt lavt T-års niveau.
31151	Signifikant Δ målstørrelse for Poisson parameter, indikerer højt niveau.

Tabel 7.8 Stationer der set generelt over samtlige analyserede nedbørsvariable og

8. Konklusion

Til beskrivelse af ekstremregn i Danmark er en parametrisk statistisk model baseret på modellering af overskridelsesserier (Partial Duration Series, PDS) blevet introduceret til analyse af regndata fra Spildevandskomiteens regnmålersystem. Den herved benyttede parameterisering består således af henholdsvis det gennemsnitlige antal årlige overskridelser, middelværdien af overskridelsernes størrelse og højere ordens momenter, der fastlægger formen af ekstremværdifordelingen.

Til en indledende vurdering af den regionale variabilitet og bestemmelse af en statistisk fordeling til modellering af overskridelserne er L-moment analyse benyttet. Ved vurdering af i alt 5 forskellige fordelinger er den generaliserede Pareto fordeling fundet passende for samtlige af de analyserede nedbørsvariable.

Til generel modellering af den regionale variabilitet af PDS parametrene er en regressionsmodel baseret på generaliseret mindste kvadraters (Generalized Least Squares, GLS) metode blevet introduceret. Modellen udmærker sig ved eksplicit at tage hensyn til de statistiske usikkerheder samt korrelationen mellem de enkelte stationer. Estimation af korrelationen mellem sammenhørende ekstreme hændelser godtgør en markant spatial struktur, hvor intensiteter med stor varighed og bassin- og overløbsvolumen med små afløbstal har betydelig større spatial korrelation end intensiteter med små varigheder og bassin- og overløbsvolumen med store afløbstal. Korrelationen mellem antallet af ekstremhændelser udviser derimod ingen spatial struktur, og en konstant korrelationskoefficient er benyttet.

Som special tilfælde af GLS modellen er en regional middelværdimodel benyttet til vurdering af den regionale homogenitet af PDS parametrene samt til kvantificering af den totale usikkerhed omkring det regionale middelniveau. For de variable der udviser en signifikant regional variabilitet er GLS regressionsmodellen anvendt ved brug af forskellige klimatiske og fysiografiske karakteristika. Af den resulterende GLS model estimeres den pågældende PDS parameter (regional middelværdi eller som funktion af beskrivende variable) samt den tilhørende prediktionsusikkerhed. Denne usikkerhed udtrykker dels den statistiske usikkerhed, korrigeret for korrelation, og dels den eventuelle residuale usikkerhed grundet regional variabilitet, der ikke kan forklares af GLS modellen.

For parametrene i PDS modellen konkluderes følgende:

- For samtlige analyserede nedbørsvariable udviser Poisson parameteren en signifikant regional variabilitet. En betydelig del af denne variabilitet kan beskrives af årsmiddelnedbøren. Poisson parameteren er en voksende funktion af årsmiddelnedbøren og angiver således, at der forekommer flere ekstreme hændelser på steder med stor årsmiddelnedbør. Forklaringsgraden er størst, og den resulterende usikkerhed derfor mindst, for intensiteter med stor varighed og bassin- og overløbsvolumen med små afløbstal.
- Middeloverskridelsen kan antages at være homogen (konstant niveau i hele landet) for intensiteter med små varigheder (mindre end ca. en time) og bassin- og overløbsvolumen for store afløbstal. For intensiteter med varigheder over en time og

bassin- og overløbsvolumen for små afløbstal er der derimod en signifikant regional variabilitet. En betydelig del af denne variabilitet kan forklares af en identificeret storby effekt, der bevirker at middeloverskridelsen i Københavnsområdet generelt er signifikant højere end i resten af landet. For intensiteter med varighed mellem 1 og 12 timer har de kystnære stationer i København dog samme niveau som i resten af landet.

• For hovedparten af de analyserede nedbørsvariable kan de højere ordens momenter antages at være homogene. For intensiteter med stor varighed (48 timer) og for volumen variable udviser data derimod en signifikant regional variabilitet. For ingen af disse variable har det dog været muligt at beskrive variabiliteten ud fra de betragtede klimatiske og fysiografiske karakteristika. Der benyttes derfor generelt en middelværdi betragtning for højere ordens momenter.

Baseret på GLS modellen for PDS parametrene kan *T*-års hændelsen med tilhørende usikkerhed bestemmes på enhver lokalitet i Danmark. Med hensyn til effekten af årsmiddelnedbøren gælder generelt, at jo større årsmiddelnedbør jo større er *T*-års hændelsen. Den relative effekt er størst for små gentagelsesperioder (T < 10 år). Grundet forskelle i middeloverskridelsen fås et betydeligt højere niveau af *T*-års hændelsen i Københavnsområdet end i resten af landet, og forskellen mellem regionerne er større jo større gentagelsesperiode der betragtes. Generelt gælder at den relative usikkerhed på *T*års estimatet er en voksende funktion af *T*. For store gentagelsesperioder (T > 10 år) gælder desuden, at den relative usikkerhed er en voksende funktion af varigheden af den betragtede intensitet.

Det fundne *T*-års estimat ligger betydeligt under Landsregnrækken for intensiteter med små varigheder. For intensiteter med store varigheder ligger *T*-års niveauet i Københavnsområdet betydeligt over Landsregnrækken, mens middelniveauet i den resterende del af landet stort set svarer til Landsregnrækken.

Sluttelig, i forbindelse med brug af historiske regnserier i numeriske modeller, er de analyserede regnserier blevet klassificeret i forhold til den regionale ekstremværdimodel. Dette muliggør valg af lokale regnserie, afhængig af den pågældende lokalitets årsmiddelnedbør og beliggenhed, svarende til et ønsket konfidensniveau for dimensioneringen. Desuden er enkelte stationer udpeget, der bør betragtes som outliers i forhold til den regionale model.

9. Referencer

Arnbjerg-Nielsen, K., 1993, *Non-parametric statistics on extreme rainfall*, Eksamensprojekt nr. 5/93, IMSOR & LTH, Danmarks Tekniske Højskole, Lyngby.

Arnbjerg-Nielsen, K., Harremoës, P. & Spliid, H., 1994, Non-parametric statistics on extreme rainfall, *Nordic Hydrol.*, 25(4), 267-266.

Arnbjerg-Nielsen, K., Harremoës, P. & Spliid, H., 1996, Interpretation of regional variation of extreme values of point precipitation in Denmark, *Atmos. Res.*, *42*, 99-111.

Ashkar, F. & Rousselle, J., 1987, Partial duration series modeling under the assumption of a Poissonian flood count, *J. Hydrol.*, *90*, 135-144.

Bramslev, J.-P., 1989, *Bearbejdning af nedbørsdata fra et landsdækkende regnmålersystem*, Laboratoriet for Teknisk Hygiejne, Danmarks Tekniske Højskole, Lyngby.

Cappelen, J., 1993, Kvalitetsmarkering af automatiske nedbørregistreringer, *Technical Report 93-16*, Danmarks Meteorologiske Institut, København.

Dahl, A., Mikkelsen, P.S. & Harremoës, P., 1992, Ekstremregns intensiteter og rørdimensionering, *Stads- og Havneingeniøren*, 8, 30-34.

Davison, A.C. & Smith, R.L., 1990, Models for exceedances over high thresholds, J. *Royal Statist. Soc. B*, 52(3), 393-442.

Ekanayake, S.T. & Cruise, J.F., 1993, Comparisons of Weibull- and exponential-based partial duration stochastic flood models, *Stochastic Hydrol. Hydraul.*, 7(4), 283-297.

Fitzgerald, D. L., 1989, Single station and regional analysis of daily rainfall extremes, *Stochastic Hydrol. Hydraul.*, *3*, 281-292.

Frich, P., Rosenørn, S., Madsen, H. & Jensen, J.J., 1997, Observed precipitation in Denmark 1961-1990, *Technical Report 97-8*, Danish Meteorological Institute, Copenhagen.

Harremoës, P., Mikkelsen, P.S., Bramslev, J.-P. & Dahl, A., 1992, Ekstremregns nedbørsmængde og geografiske fordeling, *Stads- og Havneingeniøren*, *6*/7, 30-35.

Hosking, J.R.M., 1990, L-moments: Analysis and estimation of distributions using linear combinations of order statistics, *J. Royal Statist. Soc. B*, 52(1), 105-124.

Hosking, J.R.M., 1991, Fortran routines for use with the method of L-moments, *Res. Report RC17097*, IBM Research Division, Yorktown Heights, New York.

Hosking, J.R.M. & Wallis, J.R., 1987, Parameter and quantile estimation for the generalized Pareto distribution, *Technometrics*, 29(3), 339-349.

Hosking, J.R.M. & Wallis, J.R., 1993, Some statistics useful in regional frequency analysis, *Water Resour. Res.*, 29(2), 271-281. Correction, *Water Resour. Res.*, 31(1), 251, 1995.

Kuczera, G., 1983, Effect of sampling uncertainty and spatial correlation on an empirical Bayes procedure for combining site and regional information, J. Hydrol., 65, 373-398.

Landwehr, J.M, Matalas, N.C. & Wallis, J.R., 1979, Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles, *Water Resour. Res.*, *15*(5), 1055-1064.

Madsen, H., 1993, *Statistisk analyse af ekstremregn i Danmark*, Eksamensprojekt, Institut for Strømningsmekanik og Vandbygning, Danmarks Tekniske Højskole, Lyngby.

Madsen, H., Rosbjerg, D. & Harremoës, P., 1994, PDS-modelling and regional Bayesian estimation of extreme rainfalls, *Nordic Hydrol.*, *25*(4), 279-300.

Madsen, H. & Rosbjerg, D., 1997a, The partial duration series method in regional indexflood modeling, *Water Resour. Res.*, 33(4), 737-746.

Madsen, H. & Rosbjerg, D., 1997b, Generalized least squares and empirical Bayes estimation in regional partial duration series index-flood modeling, *Water Resour. Res.*, *33*(4), 771-781.

Mikkelsen, P.S., Dahl, A. & Harremoës, P., 1992, Regnserier, overløbsmængder og bassindimensionering, *Stads- og Havneingeniøren*, 9, 52-61.

Mikkelsen, P.S., Harremoës, P. & Rosbjerg, D., 1995, Properties of extreme point rainfall II: Parametric data interpretation and regional uncertainty assessment, *Atmos. Res.*, *37*, 287-304.

Mikkelsen, P.S., Madsen, H., Rosbjerg, D. & Harremoës, P., 1996, Properties of extreme point rainfall III: Identification of spatial inter-site correlation structure, *Atmos. Res.*, 40, 77-98.

Miquel, J., 1984, *Guide Pratique D'estimation des Probabilites de Crues*, Editions Eyrolles, Paris.

Rosbjerg, D. & Madsen, H., 1996, The role of regional information in estimation of extreme point rainfalls, *Atmos. Res.*, 42, 113-122.

Rosbjerg, D., Madsen, H. & Rasmussen, P.F., 1992, Prediction in partial duration series with generalized Pareto-distributed exceedances, *Water Resour. Res.*, 28(11), 3001-3010.

Rosbjerg, D., Rasmussen, P.F. & Madsen, H., 1991, Modelling of exceedances in partial duration series, *Proceedings of the International Hydrology and Water Resources Symposium*, Perth, 755-760.

Shane, R.M. & Lynn, W.R., 1964, Mathematical model for flood risk evaluation, J. *Hydraul. Div. ASCE*, 90(HY6), 1-20.

Spildevandskomiteen, 1974, Spildevandskomiteens Skrift nr. 16, Bestemmelse af regnrækker, Dansk Ingeniør Forenings Spildevandskomité.

Spildevandskomiteen, 1980, Spildevandskomiteens Skrift nr. 17, Spildevandskomiteens regnmålersystem, Dansk Ingeniør Forenings Spildevandskomité.

Stedinger, J.R., 1983, Estimating a regional flood frequency distribution, *Water Resour*. *Res.*, *19*(2), 503-510.

Stedinger, J.R. & Tasker, G.D., 1985, Regional hydrologic analysis, 1. Ordinary, weighted and generalized least squares compared, *Water Resour. Res.*, 21(9), 1421-1432. Correction, *Water Resour. Res.*, 22(5), 844, 1986.

Stedinger, J.R., Vogel, R.M. & Foufoula-Georgiou, E., 1993, Frequency analysis of extreme events, *Handbook of Hydrology* (ed. D.R. Maidment), Chapter 18, McGraw-Hill.

Tasker, G.D. & Stedinger, J.R., 1989, An operational GLS model for hydrologic regression, *J. Hydrol.*, *111*, 361-375.

Todorovic, P. & Zelenhasic, E., 1970, A stochastic model for flood analysis, *Water Resour. Res.*, 6(6), 1641-1648.

Vogel, R.M. & Fennessay, N.M., 1993, L moment diagrams should replace product moment diagrams, *Water Resour. Res.*, 29(6), 1745-1752.

Vogel, R.M. & Wilson, I, 1996, Probability distribution of annual maximum, mean and minimum streamflows in the United States, *J. Hydrol. Eng.*, *ASCE*, *1*(2), 69-76.

Zelenhasic, E., 1970, Theoretical probability distributions for flood peaks, *Hydrology Paper, no.* 42, Colorado State University, Fort Collins, Colorado.

Station	Navn	Bredde-	Længde-	Startdato	Slutdato	Nedbrud	Korr. t
nr.		grad	grad			[dage]	[år]
20061	Hiørring	572600	100100	19790101	19821130	78.6	3.70
20097	Frederikshavn Materialgård	572700	103000	19900419	19970101	3.0	6.70
20099	Frederikshavn Renseanlæg	572600	103200	19900424	19970101	173.5	6.22
20211	Sulsted	571000	95800	19790101	19970101	870.7	15.62
20304	Ålborg Pumpestation	570300	95700	19900228	19970101	18.8	6.79
20461	Svenstrup	565800	95200	19790108	19900315	239.1	10.53
21364*	Flyvestation Karup	561800	90700	19931209	19970101	11.8	3.03
22123	Grenå Ådalen	562500	105400	19961116	19970101	0.0	0.13
22191*	Flyvestation Tirstrup	561800	103700	19931102	19970101	3.4	3.16
22321	Lystrup/Egå Renseanlæg	561300	101500	19890905	19970101	272.1	6.58
22361	Viby J. Renseanlæg	560800	100900	19790101	19970101	715.4	16.04
22421	Silkeborg Vandværk	561000	93400	19790101	19970101	330.6	17.10
22554	Trankær Renseanlæg	560500	100800	19890905	19970101	23.0	7.26
23127	Horsens Renseanlæg	555100	95100	19820820	19970101	174.6	13.89
23241*	Flyvestation Vandel	554200	91200	19940209	19970101	5.5	2.88
23261	Veile Renseanlæg	554200	93300	19790101	19970101	1774.7	13.14
23294	Fredericia Centralrenseanlæg	553300	94300	19941123	19970101	1.5	2.10
23321	Kolding Renseanlæg	552900	92900	19790101	19970101	254.5	17.30
23345*	Vamdrup Flyveplads	552600	92000	19910610	19970101	9.4	5.54
24292	Herning Renseanlæg	560900	85700	19790101	19970101	698.6	16.09
24341*	Hvide Sande	560000	80800	19930901	19970101	4.6	3.32
25101^{*}	Blåvandshuk Fyr	554300	80500	19910913	19950331	0.7	3.54
25171	Esbjerg Renseanlæg V	552900	82600	19790104	19970101	870.1	15.61
26091	Haderslev Renseanlæg	551500	93000	19790101	19970101	1064.7	15.09
26099^{*}	Flyvestation Skrydstrup	551400	91600	19931007	19970101	0.7	3.23
26376	Tønder Renseanlæg	545500	85100	19940209	19970101	6.8	2.88
26481	Sønderborg Vandværk	545500	94800	19790101	19970101	413.5	16.87
27011^{*}	Læsø SV	571600	105400	19900112	19960706	265.0	6.25
27021^{*}	Anholt Havn	564300	113100	19900330	19950331	441.3	3.79
27031^{*}	Hesselø	-	-	19910603	19970101	791.0	3.42
27119^{*}	Endelave	554500	101800	19900706	19970101	407.7	5.38
28181	Bolbro Vandværk	552300	102000	19790101	19970101	992.7	15.28
28182	Dalum	552200	102200	19790119	19871027	553.8	7.25
28183	Ejby Mølle Renseværk	552400	102500	19790101	19891121	1250.0	7.47
28184	Odense NV Renseanlæg	552500	102200	19790101	19970101	967.4	15.35
28186	Odense Vandværk	552400	102200	19790101	19970101	900.5	15.54
28453	Egsmade Renseanlæg	550400	104100	19941004	19970101	12.3	2.21
29009^{*}	Gniben	560100	111700	19900601	19970101	12.3	6.55
29041	Holbæk Renseanlæg	554300	114400	19790101	19970101	236.5	17.35
29291	Tuelsø Renseanlæg	552700	113400	19920301	19970101	3.2	4.83
29354	Slagelse Renseanlæg	552500	112100	19940823	19970101	27.9	2.28
29387	Korsør Renseanlæg	552000	111200	19961015	19970101	32.5	0.12
29429*	Omø Fyr	551000	110800	19900719	19970101	32.6	6.37
30031	Sydkystens Renseanlæg	560000	123400	19790123	19970101	187.9	17.43
30131	Frederikssund Renseanlæg	555000	120400	19920116	19970101	30.2	4.88
30168	Hillerød Renseanlæg	555700	121600	19910603	19970101	181.1	5.09

Appendiks A Oversigt over regnmålere tilknyttet DMI's net af automatiske nedbørsmålere.

Station	Navn	Bredde-	Længde-	Startdato	Slutdato	Nedbrud	Korr t
nr	144411	grad	grad	Sturiduto	blutuuto	[dage]	[år]
30189	Munkeris	555000	122500	19790601	19831004	14.1	4 30
30191	Dronninggård Renseanlæg	554800	122700	19790101	19970101	539.8	16.52
30201	Vedbæk Renseanlæg	555100	123400	19790101	19970101	340.0	17.07
30208	Ordrup Kirkegård	554600	123500	19911014	19970101	107.8	4.92
30211*	Svanemøllens Kaserne	554300	123400	19790920	19930416	1160.4	10.39
30217*	Jægersborg	554600	123200	19940208	19970101	5.2	2.88
30221	Virum	554700	123000	19790101	19970101	223.5	17.39
30222	Søborg Vandværk	554400	123100	19790101	19970101	428.1	16.83
30223	Askevænget	554800	122900	19790803	19830927	66.3	3.97
30224	Holte Vandværk	554800	122800	19790802	19831004	30.8	4.09
30243	Farum Pumpestation	554800	122200	19920824	19970101	0.2	4.36
30261*	Flyvestation Værløse	554600	122000	19940301	19970101	0.1	2.84
30309	Åvendingen	554200	122800	19950411	19970101	0.0	1.73
30311	Emdrup	554300	123300	19790108	19941025	257.3	15.09
30312	Vølundsgade	554200	123300	19790124	19940113	322.1	14.09
30313	Kløvermarksvej	554000	123600	19790101	19970101	444.3	16.79
30314	Kongens Enghave	553900	123200	19790101	19970101	275.3	17.25
30315	Husum	554300	122800	19790116	19950309	547.9	14.64
30316	Måløv Renseanlæg	554600	121900	19790101	19970101	318.9	17.13
30317	Glostrup Vandværk	554000	122400	19790123	19970101	402.7	16.84
30318	Hvidovre Vandværk	553900	122800	19790101	19970101	264.9	17.28
30319	Hvidovre Pumpestation	553700	122900	19790101	19970101	246.3	17.33
30321	Rødovre Vandværk	554200	122800	19790101	19970101	280.9	17.23
30325	Bispebjerg Hospital	554300	123300	19950114	19970101	0.3	1.96
30326	Lygten	554200	123200	19941125	19970101	32.8	2.01
30348	Greisvej	553900	123800	19950411	19970101	0.0	1.73
30351	Tårnby Pumpestation 4	553800	123600	19790101	19970101	259.3	17.29
30352	Tårnby Pumpestation 10	553600	123500	19790223	19970101	248.8	17.18
30353	Tårnby Renseanlæg	553800	123900	19790110	19970101	1211.5	14.66
30381	Landbohøjskolen	554100	123200	19920508	19970101	0.6	4.65
30384	Brøndbyvester Vandværk	553800	122500	19900410	19970101	69.9	6.54
30386	Albertslund Materielgård	554000	122000	19931028	19970101	12.8	3.14
30388	Høje Tåstrup	554000	121600	19960115	19970101	3.3	0.97
30395	Ishøj Varmeværk	553600	122100	19921102	19970101	3.5	4.15
30411	Roskilde Renseanlæg	553900	120400	19790101	19970101	624.2	16.29
30451	Mosede Renseanlæg	553400	121700	19790101	19970101	286.3	17.22
31031	St. Heddinge Vandværk	551900	122400	19790101	19911231	312.7	12.14
31151	Næstved Renseanlæg	551300	114500	19790101	19970101	239.2	17.35
31231	Vordingborg Renseanlæg	550000	115400	19790101	19911231	150.6	12.58
31401	Nakskov	545000	110900	19790101	19970101	256.1	17.30
31406*	Albuen	545000	105800	19911107	19970101	51.2	5.01
31511	Nykøbing F. Renseanlæg	544600	115300	19790101	19970101	437.3	16.80
31621*	Gedser Odde	543400	115800	19931111	19970101	0.7	3.14
32097	Rønne C	550600	144300	19891109	19970101	7.8	7.12

* Målere ejet af DMI.

Nedbrud angiver den samlede tid, hvor måleren har været ude af drift. Korr. t er den korrigerede observationsperiode, beregnet som driftsperiode minus perioder uden målinger. Stationer med mere end 10 års observationer er markeret ved skravering.

Station	Dato	Tid	Varighed	Dybde	Status	Max int.	Ny status	Note
nr.	010511	1004	[min]	[mm]		[µm/s]		
20061	810/11	1906	27	7.4	2e	43.3	1	A
20097	910722	1033	204	61.4	2e	33.3	1	A
20097	940826	1656	32	10.0	1	33.3		
20099	931208	1200	8	4.2	2e	33.3		
20099	940630	1125	2	8.4	2edt	83.3		
20211	790622	1304	117	28.8	2e	53.3	1	А
20211	880625	1221	112	47.4	2e	50.0	1	А
20211	880704	1508	86	30.2	2e	53.3	1	А
20211	950713	432	132	17.8	2 t	33.3		
20304	920805	1119	6	5.6	2e	60.0		В
20304	960826	1227	83	40.4	1	40.0		
20461	790625	1254	226	17.4	2e	36.7	1	А
20461	840801	119	55	11.2	2e	43.3	1	А
20461	851109	718	105	9.4	2e	40.0	1	А
20461	880724	527	115	19.0	2e	36.7	1	А
21364	940325	1118	9	17.4	2ed	133.3		
22191	960212	2135	2	7.0	2ed	60.0		
22191	960608	1410	31	10.0	1	36.7		
22321	940502	1307	2	3.8	2ed	36.7		
22321	950108	1642	412	10.4	2e	33.3		
22321	950731	623	1	2.4	2edt	40.0		
22321	951221	1241	11	4.8	2ed	43.3		
22321	960307	1314	2	7.8	2ed	70.0		
22321	960415	1229	3	12.3	2ed	153.3		
22321	960608	1332	20	17.0	1	46.7		
22361	810617	1013	102	13.6	2e	36.7	1	А
22361	820608	606	2	4.2	2e	56.7		
22361	840712	157	309	39.2	2e	50.0	1	А
22361	840718	1543	11	8.6	2e	33.3	1	А
22361	880517	802	3	5.6	2e	70.0		
22361	880920	950	2	7.0	2e	110.0		
22361	880923	639	34	23.6	2e	205.0		
22361	891102	853	14	6.0	2e	31.7		
22361	921112	927	25	2.8	2e	43.3		D
22421	830801	1452	14	19.0	2e	70.0	1	A
22421	871228	2008	238	9.6	2e	86.7	-	
22421	901002	814	46	23.4	20 2e	127.8		
22421	910219	1411	117	16.4	20 7e t	73 3		
22121	920522	1047	2	8.0	20 t 7e t	130.0		
22421	950908	758	2 1	3.0	2e t 2edt	53.3		
22721	96087/	950	122	9.2	2000	33.3		
22554	830521	1053	122	9.0 10 6	1 20	22.2	1	Δ
23127	860720	1/15	22	7.6	20 20	35.5	1	Δ
23127	870800	1010	25	7.0 11 Q	20	267	1	л л
23127	010000	1019	02 50	20.0	2e 20	20.7 72.2	1	A
22127	000023	1430	59 6	20.0 2 0	20	43.3 110.0	1	л
23127	920701	40/	0	U.ð	2e	52.2		
23127	920809	830	08	4.8	2e	55.5 112.2		
23127	920810	03/	11	1.4	2e	115.5		
23127	920810	845	56	6.8	2e	54.2		

Appendiks BNedbørshændelser med ekstreme minutintensiteter.

Station	Dato	Tid	Varighed	Dybde	Status	Max int.	Ny status	Note
nr.			[min]	[mm]		$[\mu m/s]$	5	
23127	920820	2351	439	21.0	2e	50.8		В
23127	921008	2111	42	3.6	2e	56.7		D
23127	921024	1452	104	5.4	2e	53.5		D
23127	921024	1907	13	10.2	2e	163.3		D
23127	921028	133	195	22.0	2e	110.3		D
23127	921102	804	598	34.4	2e	56.9		D
23127	921112	1010	168	4.2	2e	56.7		D
23127	921116	854	249	9.4	2e	50.5		D
23127	921116	1524	222	9.0	2e	51.1		D
23127	921118	2230	135	4.6	2e	50.1		D
23127	921119	824	9	10.8	2e t	163.3		D
23127	921120	1203	10	3.6	2e t	56.7		D
23127	921121	920	1	6.6	2e t	110.0		D
23127	921123	514	169	9.0	2e t	53.5		D
23127	921123	1346	1	3.4	2e t	56.7		D
23127	921123	1548	1	3.2	2e t	53.3		D
23127	921124	403	23	7.6	2e t	50.3		D
23127	921124	751	1	3.4	2e t	56.7		D
23127	921125	436	266	14.6	2e t	110.2		D
23127	921126	325	365	16.0	2e t	57.0		D
23127	921127	509	1	9.8	2e t	163.3		D
23127	921201	2050	1	6.8	2e t	113.3		D
23127	921211	706	31	3.6	2e t	56.7		D
23127	921217	530	1	6.6	2e t	110.0		D
23127	930325	621	1	2.8	2edt	46.7		
23127	930421	731	30	4.8	2edt	56.7		
23241	940801	1219	67	9.6	1	33.3		
23241	940922	848	1	6.0	2edt	100.0		
23261	800618	1327	157	42.4	2e	46.7	1	А
23261	820812	1636	11	15.2	2e	43.3	1	А
23261	830801	1401	28	15.8	2e	50.0	1	А
23261	850714	2206	37	12.0	2e	63.3	1	А
23261	850906	1300	341	49.8	2e	80.0		В
23261	860729	1337	107	22.0	2e	43.3	1	А
23261	880701	2053	141	18.0	2e	33.3	1	А
23261	941018	912	2	7.4	2ed	86.7		
23261	950823	1300	109	10.0	1	33.3		
23321	821010	1233	23	17.8	2e	33.3	1	А
23321	851201	1441	556	26.0	2e	46.7		
23321	870105	122	65	8.2	2e	43.3		
23321	910425	1124	7	4.6	2e t	36.7		В
23321	910618	552	25	2.8	2e t	33.3		
23321	950904	1047	33	3.6	2ed	40.1		
23321	951002	1115	5	6.0	2e	66.7		
23345	940201	1955	272	9.4	2e	54.0		
23345	940202	1000	71	4.0	2e	56.7		
23345	940227	1738	489	20.2	2e	54.0		
23345	940629	736	48	9.4	1	53.3		
23345	940829	844	25	7.2	1	40.0		
23345	940905	1404	38	7.4	1	33.3		-
23345	951106	2015	10	3.6	1	53.7	2e	E
24292	800713	1423	125	59.2	2e	70.0	1	А

Station	Dato	Tid	Varighed	Dybde	Status	Max int.	Ny status	Note
nr.			[min]	[mm]		[µm/s]		
24292	840504	907	8	12.6	2e	176.7		
24292	840621	720	52	8.6	2e	33.3	1	А
24292	840712	137	275	28.0	2e	46.7	1	А
24292	850723	1259	8	10.6	2e	156.7		
24292	851201	2240	118	25.4	2e	76.7		
24292	870922	342	157	33.8	2e	36.7	1	А
24292	871209	1158	2	3.6	2e	33.3		
24292	871210	942	41	21.8	2e	93.3		
24292	880721	925	16	13.6	2e	63.3		
24292	900705	1719	45	13.6	2e t	43.3	2 t	А
24292	910415	910	13	3.4	2e t	53.3		
24292	940728	2024	8	8.6	$\frac{1}{2}$ t	40.0		
24292	940804	1137	71	23.4	2e t	120.1		
24341	940909	1837	85	6.0	1	40.0		
24341	950904	1125	42	9.0	2ed	120.0		
24341	950912	554	19	8.0	2ed	110.2		
24341	950912	812	5	9.0	2ed	120.0		
24341	950914	317	490	56.0	2ed	151.1		
24341	950914	1228	36	47.6	2ed 2ed	131.1		
24341	951211	754	2	3.0	2ea 2e	467		
24341	961204	1444	2	8.0	20 2e	86.7		
25101	920202	1710	377	85.6	20 2e	87.8		
25101	920202	29	183	35.0	20 2e	63.6		
25101	920203	452	50	24.6	20 2e	115.0		
25101	920203	836	50 4	24.0	20 2e	63.3		
25101	920203	1106	37	45.8	20 2e	113.3		
25101	920203	1330	21	31.8	20 20	116.7		
25101	920203	854	13	12.2	20 2e	86.7		
25101	920214	1927	2	15.0	20 20	130.0		
25101	920812	228	30	7.2	20 2e	53.3	1	Δ
25101	921031	220	38	5.8	20 2e	53.3	1	D
25101	930803	18/1	2	5.0 1 1	20 20	367		D
25101	940629	705	85	21.7	20 2e	104.4		
25101	940713	2347	23	15.2	20 2e	104.4		
25101	9/0817	1251	114	15.2 27 A	20 2ed	131.1		
25101	950211	2025	302	27.4	200 20	1/13 7		
25101	950516	1718	11	23.0 8.8	20 0e	145.7	20	
25101	810724	1/10	163	19.0	200	36.7	1	Δ
25171	820812	1525	105	10.0	20 2e	50.7	1	Δ
25171	880812	1027	22	10.0 5.4	20	33.5	1	Λ Λ
25171	800707	012	14	J. 4 7 2	20	53.3	1	Л
25171	801013	1310	14	16.0	20 20	01 7		
25171	010502	1127	10	25.2	20	91.7		
25171	910502 010506	1050	99 10	17.9	20	02.2		
23171 25171	030012	1009	1U 21	17.0 77	2e 20	75.5 37 1		
25171	930013	625	01 0	4.4 1 Q	20	57.1 72 0		
251/1	220010 820001	1224	0 50	4.0 10.0	2e	15.0	1	٨
20091 26001	03U0U1 870620	1524	3U 11	10.0 o 1	2e	30.7 70.0	1	A
20091 26001	070030 880701	904 2011	11 60	0.4 15 9	2e 20	40.0 52.2	1	A
20091	000/01	2011 1152	00 7	13.8	2e	JJ.J 40.0	1	A A
20091	900908 010970	705	/	4.2 5 1	2e 2e t	40.0 00.0	1	A
20091 26001	910020 020007	123	1	3.4 1 C	2et	90.0 72 2		
20091	920807	1046	12	4.0	∠e t	13.3		

Station	Dato	Tid	Varighed	Dybde	Status	Max int.	Ny status	Note
nr.			[min]	[mm]		[µm/s]		
26091	951223	341	31	4.0	2ed	33.3		
26091	960608	1945	75	15.8	1	46.7		
26099	940602	1515	58	7.0	2e	64.4		
26099	940629	715	46	7.0	1	33.3		
26376	940728	1238	7	11.2	2e	87.3		
26376	960826	739	3	5.6	2e	53.3		
26481	800803	1041	159	23.2	2e	40.0	1	А
26481	820703	316	69	12.0	2e	36.7	1	А
26481	830521	1925	92	14.2	2e	36.7	1	А
26481	880701	1935	85	14.2	2e	36.7	1	А
26481	900225	2112	177	9.8	2e t	110.0		
26481	900705	1211	109	15.8	2e t	36.7	2 t	А
26481	930717	1218	7	16.6	2e t	80.0		
27011	900604	159	90	12.4	2e t	46.7		
27011	900604	648	29	9.8	2e t	86.7		
27011	900604	900	121	6.4	2e t	56.7		
27011	900619	2332	412	5.6	2e t	33.3		
27011	900706	650	82	12.0	2e t	90.0		В
27011	930929	1216	24	9.2	2edt	76.7		
27021	900701	819	122	15.4	2e t	36.7	2 t	А
27021	900705	1526	130	17.6	2e t	33.3	2 t	А
27021	930509	635	49	64.6	2edt	156.7		
27021	930712	9	388	210.9	2e t	160.0		
27021	931228	1547	136	115.1	2ed	133.3		
27021	940708	26	14	21.5	2ed	141.7		
27021	940909	534	85	2.6	2ed	30.1		
27021	940915	714	178	171.6	2ed	143.3		
27021	940915	1130	151	32.6	2ed	51.1		
27021	940915	2159	264	95.7	2ed	146.7		
27021	940916	346	168	295.0	2ed	123.3		
27021	940916	741	189	409.0	2ed	160.0		
27021	941106	1102	304	152.8	2ed	156.7		
27021	941108	2223	15	17.4	2ed	163.3		
27021	941114	1148	120	13.6	2e	63.3		
27021	941226	326	31	4.8	2ed	46.7		
27021	941226	1138	18	44.0	2ed	153.3		
27021	941226	1500	157	39.8	2ed	143.4		
27021	941226	1907	23	21.2	2ed	140.0		
27021	941226	2115	2	6.2	2ed	53.3		
27021	941227	22	92	15.0	2ed	117.3		
27021	941228	233	45	9.8	2ed	56.7		
27021	941228	525	91	55.2	2ed	160.0		
27021	941228	1935	20	12.6	2ed	158.3		
27021	941228	2203	32	33.0	2ed	143.3		
27021	941229	116	15	26.6	2ed	144.2		
27021	941229	716	28	19.0	2ed	118.3		
27021	941229	1105	802	1369.2	2ed	163.3		
27021	941230	704	84	73.8	2ed	136.7		
27021	941230	1157	53	37.8	2ed	136.7		
27021	941230	2230	88	30.0	2ed	104.4		
27021	941231	1000	52	33.2	2e	120.7		
27021	941231	1710	46	18.2	2e	95.0		

Station	Dato	Tid	Varighed	Dybde	Status	Max int.	Ny status	Note
nr.			[min]	[mm]		[µm/s]	-	
27021	941231	2344	5	6.4	2e	80.0		
27021	950101	821	253	120.6	2e	156.8		
27021	950101	1522	21	7.8	2e	90.8		
27021	950103	1844	9	11.2	2e	41.1		
27021	950108	1106	351	112.0	2e	156.7		
27021	950109	1649	205	44.8	2e	160.0		
27021	950110	235	4	10.2	2e	90.0		
27021	950110	727	59	9.1	2e	113.3		
27021	950110	930	29	45.6	2e	150.0		
27031	910819	917	2	3.0	2e t	33.3		
27031	910903	308	1	4.0	2e t	66.7		
27031	910924	848	1	4.0	2e t	66.7		
27031	911016	1430	1	7.2	2e t	120.0		
27031	911116	2304	37	29.6	1	50.0	2e	С
27031	911122	1640	667	264.4	2e t	161.7		
27031	911123	948	13	12.4	2e	61.1		
27031	911123	2048	29	31.6	2e	135.0		
27031	911124	1304	23	11.0	2e	93.3		
27031	911124	2337	11	23.2	1	137.8	2e	С
27031	911127	1918	16	9.8	2e	85.0		
27031	911129	453	162	112.6	2e	154.0		
27031	911209	652	62	50.4	2e	133.7		
27031	911209	1521	168	189.2	2e	151.7		
27031	911211	2319	43	17.8	1	91.7	2e	С
27031	911213	528	88	51.2	2e	148.3		
27031	911213	807	10	3.8	2e	34.2		
27031	920108	2025	47	36.6	2e	146.7		
27031	920109	111	419	31.6	2e	147.1		
27031	920119	620	79	65.8	2e	140.0		
27031	920121	1217	65	8.2	2e	66.7		
27031	930514	2142	61	23.2	2ed	138.3		
27031	930515	102	43	20.0	2ed	113.7		
27031	930515	250	187	75.0	2ed	140.8		
27031	930523	2255	28	17.4	2 d	93.3		
27031	930524	140	51	38.2	2ed	120.0		
27031	930524	1955	62	20.2	2ed	127.5		
27031	930529	204	170	19.6	2ed	66.7		
27031	930530	1857	258	111.4	2ed	163.3		
27031	930601	43	80	10.7	2ed	46.9		
27031	930605	217	51	36.4	2ed	161.7		
27031	930609	203	28	14.6	2ed	121.1		
27031	940217	1101	9	28.2	2ed	150.0		
27031	941020	1404	153	83.8	2e	93.3		
27031	960608	1615	19	13.6	2e t	58.3		
27119	900919	1041	107	7.9	2e	31.7	1	А
28181	790808	1335	43	12.2	2e	36.7	1	А
28181	841019	100	22	5.4	2e	36.7	1	А
28181	870630	1257	11	27.0	2e t	166.7		
28181	891216	2008	250	12.8	2e	43.3		
28181	911111	1216	5	5.0	2e t	53.3		В
28181	920101	1020	117	4.8	2e t	33.5		
28181	920118	2346	975	18.0	2e t	31.1		

Station	Dato	Tid	Varighed	Dybde	Status	Max int.	Ny status	Note
nr.			[min]	[mm]		[µm/s]		
28181	920214	1307	1	3.8	2e t	63.3		
28181	920304	812	25	20.2	2e t	126.7		
28182	790622	1522	51	22.2	2e	33.3	1	А
28182	850901	1714	260	12.2	2e	33.3	1	А
28182	860729	1441	16	12.0	2e t	66.7	2 t	А
28182	870922	905	7	6.4	2e t	43.3	2 t	А
28183	790622	1528	54	60.2	2e	63.3	1	А
28183	850714	2230	217	21.0	1	33.3		А
28183	850803	1118	129	13.0	2e	36.7	1	А
28183	870922	910	37	6.8	1	46.7		А
28183	881006	1301	9	5.0	2e	67.8		
28184	850429	1041	144	3.6	2e	46.7		
28184	900701	14	9	7.4	2e t	36.7	2 t	А
28184	910918	1310	19	8.2	2e	73.3		
28184	911114	1256	39	17.0	2e	133.8		
28184	930721	1039	50	22.6	1	36.7		
28186	820626	1141	2	14.8	2e	140.0		
28186	820628	257	23	57.2	2e	276.7		
28186	820628	559	17	20.6	2e	180.0		
28186	820629	2013	56	5.2	2e	60.1		
28186	820630	829	35	55.6	20 2e	160.0		
28186	900701	10	10	9.6	20 2e	33.3	1	Δ
28/53	950527	1651	112	17.2	20	33.3	1	1
20455	000815	1023	0	18.0	20	55.5 66 7		
20000	020701	2024	42	5.6	20	36.7		
20000	020003	202 4 640	42	18.4	20	50.7 66.7	1	٨
29009	920903	1010	101	10.4	20	52.2	1	A
29009	940029	1010	101	10.0	20	122.2		
29009	700524	1041	100	10.2	20	133.3	1	•
29041	790324	1941	100	19.4 5 0	2e	40.0	1	A
29041	/90624 800624	1951	22	5.8 7.0	2e	22.2 22.2	1	A
29041	800024	/38	32	7.0	2e	33.3 26.7	1	A
29041	800705	1005	47	9.6	2e	30.7	1	A
29041	820812	1850	8	/.6	2e	33.3	1	A
29041	860816	839	9	6.6	2e t	46.7	2 t	A
29041	930510	1215	13	2.4	2ed	33.3		
29041	940629	1049	53	18.8	1	36.7		
29041	950710	214	6	4.8	2e	56.7		
29041	950720	1217	2	4.8	2e	70.0		
29041	950906	2247	43	7.2	2e	56.7		
29041	960801	1725	64	22.0	1	53.3		
29041	961107	946	159	8.6	2e t	56.7		
29291	930728	1458	9	8.2	1	36.7		
29291	940910	1228	87	12.2	1	36.7		
29291	950904	1111	81	27.6	1	36.7		
29354	940823	840	13	6.4	2ed	53.9		
29354	950712	600	62	3.4	2ed	33.5		
29354	950712	1742	314	10.0	2edt	30.5		
29354	950713	933	86	2.8	2edt	31.7		
29354	950713	1421	34	4.2	2edt	53.5		
29354	950713	1900	122	6.2	2edt	53.4		
29354	950715	1926	163	5.0	2edt	54.2		
29429	901115	1333	1	2.0	2e t	33.3		

Station	Dato	Tid	Varighed	Dybde	Status	Max int.	Ny status	Note
nr.			[min]	[mm]		[µm/s]	•	
29429	921111	1302	1275	61.8	2e t	40.0		D
29429	940629	1012	4	10.6	2e	53.3		
29429	950527	1744	74	16.8	2e	60.0		
29429	950704	2012	2	8.0	2e	103.3		
29429	950721	2241	81	15.6	1	66.7		
30031	800714	823	57	24.2	2e	63.3	1	А
30031	850715	225	101	10.8	2e	36.7	1	A
30031	860306	709	1	4.8	2e t	80.0	-	
30031	881025	1300	46	4.4	2e	60.0		
30031	900131	1351	1	2.0	2e t	33.3		
30031	900423	846	29	24.6	2e t 2e t	128.3		
30031	900424	626	2	86	2e t	110.0		
30031	910613	1254	1	34	2e t 2e t	56.7		
30031	910618	1311	36	3.8	2e t	56.7		
30031	911001	1324	94	2.0 4.4	2et	53.4		
30131	940629	1114	54	15.8	201	36.7		
30131	940825	2152	461	22.0	1	43.3		
30131	950724	1307	35	9.2	1	43.3		
30131	960608	1731	19	15.8	1	46.7		
30168	910603	1749	139	64	2e t	38.3		
30168	910818	2206	200	22.7	20 t 2e t	36.7	2 t	Δ
30168	950716	1235	19	10.0	20 t	53.3	2ι	Π
30100	830620	11255	327	18.0	20	63.3		
30103	811000	654	927	5.6	20	46.8		
30191	9/0629	1131	82	15.6	20	36.7		
30201	790705	1330	32	10.2	2e t	64.2		
30201	810817	707	32	8.0	201	103.3		
30201	810817	850	3	8.6	20 2e	130.0		
30201	811009	657	/3	10.0	20 2e	120.1		
30201	830521	2250		5.2	20	33.3		
30201	0/012/	800	1/3	3.2	1 2edt	33.5		
30200	0/0127	000	201	10.0	2edt	36.7		
30208	940127	1352	201 364	10.0	2edt	36.7		
30200	0/0216	1222	55	3.8	2edt	36.7		
30208	040210	1252 847	90	3.0	2cut 2odt	36.7		
30208	0/0218	1516	122	3.6	2cut 2edt	36.0		
30208	060522	1157	122	3.0 7.2	2cut 2ed	63.3		
30208	900 <i>322</i> 800620	131	65	15.2	200	467	1	٨
30211	011220	1/156	43	13.2	20 20 t	160.0	1	Л
30211	011220	1430		42.0 28.8	201	160.0		
30211	011220	230	23	20.0	20	63.3		
30211	020115	230 840	23	10.2	20	160.0		
20211	920113	000	23	19.2 55.4	20	160.0		
20211	920400	909	91 26	5.4	20	20.5		D
20211	921127	930 202	20	3.4 21.2	2e 2o	50.5 156.0		D D
30211	721222 021222	505 027	20	21.2 107.9	2e	120.9		ע ח
20211	921222 040010	001	92 216	121.ð 21 6	2e	100.0		D
202217 20221	940818 800413	223 012	240 221	34.0 16.0	1	43.3	1	٨
30221	000012 820521	015 2216	221	10.0	2e 1	33.3 40.0	1	A 1
20221	000721	2240 1055	21	1.2	1 2~ ±	40.0		А
30221 20221	900731 020020	1000	204	3.U 10 6	2et	33.3 22.2	〕 ↓	٨
20221	920830	2015	204	10.0	2e t	23.3 26 7	∠ t	A
30221	940629	1130	91	22.2	1	30.7		

Station	Dato	Tid	Varighed	Dybde	Status	Max int.	Ny status	Note
20221	040912	150	[IIIII] 62	20.6	1	22.2		
30221	940813	139	02	20.0	1	26 7		
20222	940616	220	222	21.0	1	50.7 40.0		•
20222	850012 850010	2020	240	22.4	2	40.0	1	A
30222	850919	2030	1 / 5 1	5.0 4.4	2e 2adt	30.7 267	1	А
20222	900429	1255	22	4.4	Zeut	50.7		•
20223	800100	2243 1025		10.8	1	20.1		A
30224	800109	1055	44	2.2	2e	30.1 272.2		
20242	040620	041	2	19.4	2e	215.5		
30243	940629	1128	99 50	17.4	1	33.3 26 7		
30243 20261	950924	1429	50 21	3.0 21.9	1	30.7		
20261	940922	2045	21	21.8	2ed	130.7		
30201	960830	1000	9	7.0	1	33.3		
30309	950724 700515	1353	19	7.0	1	33.3		
30311	/90515	1347	62	23.4	2e t	30.7	1	
30311	880/31	950	8 95	0.4	2e	30.7		A
30311	920812	848	85	9.8	2e t	33.3	2 t	A
30311	940629	1135	95	15.4	1	43.3		
30312	830521	2238	21	6.0	2e	46.7	1	A
30312	860816	959	10	9.8	2e t	36.7	2 t	A
30313	800805	1242	38	17.8	2e	33.3	1	A
30313	820130	535	22	4.2	2e	36.7		
30313	820920	1834	39	14.4	2e	36.7	1	A
30313	880529	1744	48	14.8	2e	33.3	1	А
30313	900126	117	234	10.4	2e t	43.3		
30313	920718	1246	102	20.0	2e t	36.7	2 t	А
30313	950724	1408	87	6.4	1	36.7		
30313	960618	1152	5	6.2	1	36.7		
30314	790406	1525	5	7.2	2e	46.7		
30314	800805	1238	35	13.6	2e	36.7	1	А
30314	820920	1847	24	15.8	1	36.7		A
30314	920718	1258	120	22.4	1	40.0		А
30314	940705	1054	18	2.6	2e t	30.8		
30314	941125	1012	30	24.4	2e	143.3		
30314	960704	1352	214	17.0	1	40.0		
30315	830521	2230	29	12.4	2e	70.0	1	A
30315	840719	1118	81	23.6	2e	36.7	1	А
30315	850901	2314	269	23.2	2e	33.3	1	A
30315	871126	1409	52	34.4	2e t	196.7		
30315	900616	1211	1	2.4	2e t	40.0		
30315	910507	1554	1	3.6	2e t	60.0		
30315	940629	1130	87	14.6	1	40.0		
30316	790507	920	189	6.4	2e t	30.1		
30316	870331	834	17	7.8	2e t	110.0		
30316	941006	1324	11	4.4	2ed	53.3		
30317	890826	1910	38	11.0	2e	33.3		
30317	890827	1029	65	17.4	2e	46.7	1	А
30317	950721	2337	7	5.8	1	65.0		
30318	790924	1226	2	5.8	2e	63.3		
30318	801027	1049	431	33.0	2e	73.3		
30318	830521	2229	23	5.4	1	33.3		А
30318	850828	1204	2	12.0	2e	133.3		
30318	860505	1000	1	4.0	2e t	66.7		

Station	Dato	Tid	Varighed	Dybde	Status	Max int.	Ny status	Note
nr.			[min]	[mm]		[µm/s]	-	
30318	880731	1113	144	9.2	2e	36.7	1	А
30318	900308	759	65	13.6	2e t	46.7		
30318	900330	734	6	6.4	2e t	33.3		
30318	920615	816	2	2.2	2e	33.3		
30318	940629	1127	19	14.8	1	46.7		
30318	950724	1402	25	14.2	1	33.3		
30318	960826	832	22	17.2	1	36.7		
30319	801106	0	422	7.2	2e	53.3		
30319	801110	1600	61	8.2	2e	100.1		
30319	801110	2000	181	16.2	2e	116.7		
30319	801111	400	87	5.4	2e	40.2		
30319	801113	418	223	20.4	2e	110.1		
30319	801203	600	61	6.2	2e	100.0		
30319	810813	1256	25	80.4	2e	296.7		
30319	830521	2223	28	5.2	1	36.7		А
30319	840719	1020	265	18.2	2e	36.7	1	А
30319	850528	1210	8	22.4	2e	176.7		
30319	860717	2052	10	7.8	2e t	36.7	2 t	А
30319	870623	746	38	72.2	2e	155.0		
30319	870703	746	4	7.0	2e	56.7		
30319	880701	2140	25	16.8	2e	43.3	1	А
30319	900314	734	16	9.2	2e	96.7		
30319	910628	1241	728	49.6	2e	66.7	1	А
30319	920602	1236	23	8.4	2e	106.7		
30319	920712	2128	4	4.0	2e	36.7	1	А
30319	920718	1310	159	21.0	2e	33.3	1	А
30319	940629	1125	21	9.2	1	46.7	-	
30319	940813	111	16	16.4	1	46.7		
30319	960824	1055	16	8.0	1	36.7		
30321	800612	744	393	58.2	2e	53.3	1	А
30321	830521	2231	17	13.6	1	66.7		А
30321	851217	933	2	2.2	2e	33.3		
30321	940629	1129	18	13.0	1	36.7		
30321	950724	1357	20	5.8	1	36.7		
30326	950721	2342	31	5.8	1	53.3		
30326	960324	101	71	3.8	2ed	56.7		
30326	960510	508	93	4.6	2e	56.7		
30348	960227	941	2	9.2	2e	116.7		
30351	790525	1220	17	31.0	2e	60.0		
30351	810508	606	10	3.8	2e	53.3		
30351	840608	856	14	51.8	2e	246.7		
30351	910327	758	21	33.6	2e	135.0		
30351	930105	2317	52	2.8	1	36.7	2e	Е
30351	940330	937	2	5.0	2e	70.0		
30351	950518	1146	9	19.4	2e	153.3		
30352	820708	1114	13	27.8	2e	230.0		
30352	830530	1253	2	3.4	2e	50.0		В
30352	840403	1103	371	20.2	2e	126.7		-
30352	910819	240	77	12.0	2e	30.5	1	А
30352	940330	958	4	9.6	2e	116.7	-	-
30352	940825	809	42	7.0	2e	56.7		
30353	790503	1351	13	20.6	2e	46.7		

Station	Dato	Tid	Varighed	Dybde	Status	Max int.	Ny status	Note
20252	820521	2215	42	1.8	20	[µ11/8]	1	•
30353	830321	2213	42	4.8	2e	36.7	1	Δ
30353	950724	1415	30	15.2	1	26.7 46.7		Π
30353	960624	1409	16	5.0	1	33.3		
30381	920718	1240	113	17.0	2e	33.3	1	А
30381	920831	1320	30	20.4	2e t	148.3	1	11
30381	9/0629	1131	21	16.8	201	56.7		
30381	950721	23/1	21	5 2	1	71.7	20	F
30384	910628	1318	799	33.4	2e t	/1./	$\frac{2c}{2t}$	
30384	9/0629	1135	12	55. 4 7.4	20 t	33.3	2 t	Π
30384	9/0818	228	/95	30.8	1	40.0		
30386	050721	220	+)J 1/	50.0	1	36.7		
30305	9/0629	1130	14 Q	0.0 Q /	1	20.7 20.0		
30305	05001/	740	202	12.0	1	35.0		
30393	850715	1/19	02	11.2	20	36.7	1	٨
30411	881117	140	92	5 2	20 20 t	30.7 86.7	1	A
30411	800713	1007	74	10.6	20 t 20 t	36.7	2 t	٨
30411	000517	1246	2	19.0	2et	120.0	2 t	A
30411	900317	1240	2	9.0 3.8	2e t 20	120.0 56.7		
30411	040620	1202	10	17.2	20	40.0		
20411	940029	1625	19	17.2	2	40.0		
20411	931003	1023	00 15	10.8	2e	33.3 40.0		
20451	900824	1444	15	10.2	1	40.0	1	٨
30451 20451	800805	1230	10	10.8	2e	33.3	1	A
30451 20451	800810	1220	15	5.8 14.6	2e	40.0		A
30451 20451	880024 880701	1520	03	14.0	2e t	43.3	21	A
30451	880/01	2134	3/	/.8	2e t	33.3	2 t	A
30451	900621	818	1	9.0	2e t	150.0	2 (
30451	910628	1354	8/9	25.4	2e t	40.0	2 t	А
30451	940629	1125	9	9.6		40.0	2	
31031	900612	1416	39	20.8	2e t	36.7	2 t	A
31031	900909	1155	123	6.0	2e t	38.3	2 t	A
31151	840805	1424	258	18.4	2e	40.0		A
31151	880/14	1502	33	19.6	2e t	56.7	2 t	A
31151	930505	1007	l	3.4	2e t	56.7		
31151	950825	1654	46	7.0	1	36.7		
31231	790524	1902	89	6.0	2e	33.3	1	A
31231	851201	1958	388	12.0	2e	43.3		
31231	910717	1945	10	8.4	2e t	33.3	2 t	А
31401	790516	1155	29	14.6	2e t	33.3		
31401	800613	1315	3	11.0	2e	123.3		
31401	820602	1319	2	8.4	2e	133.3		
31401	820611	1056	2	9.6	2e	110.0		
31401	820726	1053	6	12.2	2e	173.3		
31401	820727	945	30	16.4	2e	220.0		
31401	820730	1250	13	12.8	2e	130.0		
31401	820903	1112	11	19.4	2e	190.0		
31401	830519	1043	2	13.6	2e	113.3		
31401	830521	2049	47	21.0	2e	36.7	1	А
31401	850919	1856	44	16.8	2e	36.7	1	А
31401	900706	2118	1	9.0	2e t	150.0		
31401	910223	334	174	6.4	2e t	56.7		
31401	940802	321	62	27.0	1	33.3		

Station	Dato	Tid	Varighed	Dybde	Status	Max int.	Ny status	Note
nr.			[min]	[mm]		[µm/s]		
31406	931112	940	48	8.0	2ed	40.0		
31406	940226	1814	1024	14.4	2e	33.5		
31406	940812	2029	19	16.6	1	36.7		
31406	951112	1500	1	3.2	2edt	53.3		
31406	951112	1708	47	10.2	2edt	56.7		
31406	951112	2049	79	6.6	2edt	33.3		
31511	790524	1900	20	14.6	2e	46.7	1	А
31511	860729	1519	97	25.6	2e	43.3	1	А
31511	860731	1655	19	15.2	2e	40.0	1	А
31511	880529	1558	30	10.6	2e t	43.3	2 t	А
31511	880711	1734	30	17.8	2e t	40.0	2 t	А
31511	900228	1340	5	4.2	2e t	64.2		
31511	900701	251	13	10.4	2e t	33.3	2 t	А
31511	910222	1449	7	3.8	2e t	57.2		
31511	911107	1252	10	11.0	2e	120.4		
31511	911217	1113	21	23.0	2e	127.0		
31511	911220	1004	54	21.8	2e	85.0		
31621	931111	1445	42	10.4	1	130.2	2e	Е
31621	940910	1715	31	4.4	1	33.3		
32097	930812	1837	26	12.2	1	73.3		
32097	960518	2342	148	20.8	1	36.7		

Noter:

A Hændelser før 920926. Hændelse godkendt i overensstemmelse med DMI's manuelle kontrol.

B Hændelser før 920926. Hændelse godkendt af DMI men bør forkastes.

C Hændelser før 920926. Hændelse godkendt jvf. statusmarkering men bør forkastes. I overensstemmelse med DMI's manuelle kontrol.

D Hændelser i perioden 920927 til 921231 kontrolleret for første gang i forbindelse med dette projekt.

E Hændelser efter 930101. Hændelse godkendt af DMI men bør forkastes.

Se Afsnit 2 for yderligere dokumentation.